

REVIEW ARTICLE

Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 1: materials used to formulate microcapsules

True L. Rogers and Dave Wallick

Dow Wolff Cellulosics, The Dow Chemical Company, Midland, MI, USA

Abstract

This review highlights references where ethylcellulose, methylcellulose and hypromellose were used to make microcapsules. The review has been divided into three parts. This first part discusses various materials used to formulate microcapsules, such as the three encapsulating polymers as well as protective colloids, plasticizers and surfactants. The second part covers the various techniques used to make microcapsules, such as temperatureinduced phase separation, emulsion solvent evaporation, solvent evaporation, film coating, and others. The third part covers the various applications for which microcapsules are used, such as modified release, improved efficacy and safety, taste- and odor-masking, and others. It is hoped that formulators can use Part 1 as a guide to the literature documenting formulation of microcapsules made from these encapsulating polymers. SciFinder was utilized to identify the pertinent literature. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline. A total of 379 references were identified during the review. The need for a three-part review reflects the extensive amount of literature identified concerning these three encapsulating polymers.

Keywords: Encapsulation, microcapsule, microsphere, microparticle, multiparticulate, hydroxypropylmethylcellulose, HPMC

Introduction

The Food and Drug Administration defines microencapsulation as a process by which small, discrete solid materials, liquid droplets or gases are completely enveloped within an intact membrane¹. Microencapsulation has been practiced for many years in printing, pharmaceutical, food, cosmetic and agricultural industries. Green and Schleicher² of The National Cash Register Company first disclosed the concept of microencapsulation in 1956. From Green's and Schleicher's discovery, it is apparent that microcapsules were originally designed to encapsulate inks. In fact, scientists at the National Cash Register Company obtained several pioneering patents on microencapsulated inks for printing applications³⁻⁵.

Soon afterwards, scientists at the National Cash Register Company obtained a patent on minute polymeric capsules for drugs, in particular, using ethylcellulose to encapsulate aspirin⁶. This patent helped pioneer the utilization of microcapsules for pharmaceutical applications. Since then, over 15,000 papers and patents have been published on the topic of microencapsulation.

Microencapsulated products have found commercial success in the pharmaceutical industry. Bayer Corporation markets CIPRO Oral Suspension, which contains microcapsules consisting of ciprofloxacin, polyvinylpyrrolidone, methacrylic acid copolymer, hypromellose, magnesium stearate and polysorbate 20. The reconstituted CIPRO microcapsule formulation at a dosage of 500 mg active pharmaceutical ingredient (API) produces an equivalent blood level compared to that achieved with the CIPRO tablet, which also contains 500 mg API. Furthermore, both microcapsule suspension

and tablet formulations require only twice daily dosing to achieve the desired therapeutic effect⁷. The microcapsule suspension has an added benefit that the unpleasant taste of ciprofloxacin is masked8,9.

ETHEX Corporation produces micro K EXTENCAPS capsules (formerly of A.H. Robins Company, Inc.), which contain potassium chloride (KCl) microencapsulated within an insoluble but semi-permeable ethylcellulose membrane^{10,11}. The microcapsules are incorporated into a hard-gelatin capsule shell formulation. Once administered, the hard-gelatin capsule shell dissolves, and the microcapsules disperse throughout the aqueous gastrointestinal (GI) fluids. GI fluid gradually permeates the ethylcellulose barrier to gain access into the microcapsule core. Upon reaching the core, the GI fluid dissolves KCl. Dissolved KCl then permeates across the ethylcellulose barrier in modified fashion and is released over an 8-10-h time period. Modifying the release rate of KCl prevents highly localized concentrations within the GI tract and thus reduces GI irritation10,111.

K-DUR (formerly of Key Pharmaceuticals, Inc., now of Schering-Plough Corp.) is a commercial tablet formulation containing coated KCl micropellets¹². The KCl micropellets apparently are coated in a fluidized bed using a polymeric combination of ethylcellulose (major component) and hydroxypropylcellulose (minor component). The coated KCl micropellets are then combined with other excipients and compressed to form tablets. The tablets disintegrate rapidly upon exposure to aqueous media, and the micropellets then disperse and release KCl in modified fashion. Like micro K EXTENCAPS, the coated KCl micropellets contained in K-DUR tablets rapidly disperse following tablet disintegration. GI irritation is reduced by avoiding highly localized KCl concentrations within the GI tract¹².

Recall that over 15,000 references have been identified on the topic of microencapsulation. Hence, the microencapsulation literature was organized into various subsets in order to render it more manageable. In one subset, the literature was organized to include references where microencapsulation was achieved using ethylcellulose, methylcellulose or hypromellose. This subset consisted of 379 references and was deemed feasible to compile a comprehensive review.

References compiling this review were analyzed according to publication date (journal articles and patent applications) or issue date (granted patents), and the results of the analysis are shown in Figure 1. Utilization of ethylcellulose, methylcellulose or hypromellose for microencapsulation of pharmaceuticals has been studied since 1964, which is the year the National Cash Register Company patent (mentioned earlier) was granted6. Within 10 years of this original publication, almost 30 references were published. Publication frequency peaked between 1981 and 1995, when over 200 references were published. Presently, publication frequency remains high. Forty-six references were published between 1996 and 2000, and 45 references have been published since then. A high publication rate indicates that there remains significant interest in the pharmaceutical industry and in academia concerning the use of ethylcellulose, methylcellulose and hypromellose for microencapsulation.

An analysis of publications by continent is shown in Figure 2, and the top-10 countries publishing research on microencapsulation are shown in Figure 3. With the exception of Antarctica, each continent is represented to varying degrees by journal or patent publications. It is apparent that Asia, which contributed 50% of the references compiling this review, is by far the most prolific of the continents regarding publication frequency. Japan is the most prolific of the Asian countries with 72 publications, followed by India (32 publications), China

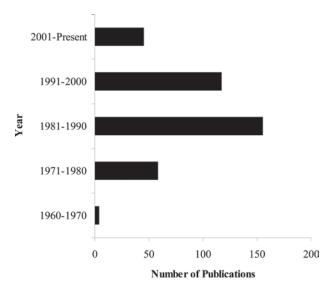


Figure 1. Analysis, by year of publication, of references compiling this literature review. The literature search was limited to references where microencapsulation had been achieved using ethylcellulose, methylcellulose or hypromellose.

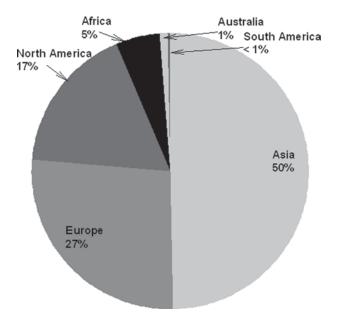


Figure 2. Analysis, by continent, of frequency of publications regarding microencapsulation.

(15 publications), Turkey (13 publications) and Taiwan (12 publications). All five of these countries are top-10 publishing countries (see Figure 3). Europe contributed 27% of the references with France (15 publications), the UK (9 publications) and Bulgaria (9 publications) being top-10 publishing countries. North America contributed 17% of the references with the USA (48 publications) being a top-10 publishing country. Africa contributed 5% of the references with Egypt (12 publications) being a top-10 publishing country, and Australia and South America contributed 1% and <1% of the references, respectively.

Upon evaluating the literature, it is evident that the pharmaceutical community lacks access to comprehensive literature reviews where ethylcellulose, methylcellulose or hypromellose have been used for microencapsulation. Only three literature reviews were identified out of the nearly 400 references compiling this review. Two reviews were published in French by Chemtob^{13,14}; one review was published in Japanese by Samejima¹⁵; and several textbooks on the general topic of microencapsulation were identified¹⁶⁻²⁴. Yet it remains obvious that a comprehensive review is lacking which communicates the historical impact of ethylcellulose, methylcellulose and hypromellose. Furthermore, a concise assimilation of literature has not been published regarding microencapsulation with these polymers and associated end-use applications.

The purpose of this review is to provide a comprehensive evaluation of microencapsulation with ethylcellulose, methylcellulose or hypromellose. Because of its extensive history of usage, ethylcellulose is heavily emphasized in this review as an encapsulating polymer. In fact, 372 of the 379 references discuss microencapsulation with ethylcellulose.

The review is divided into three major sections. The first section organizes journal and patent literature according to the materials utilized to achieve

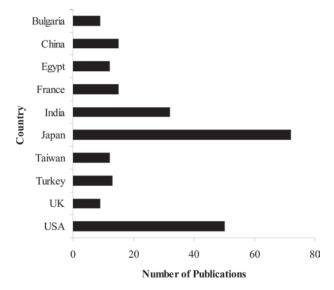


Figure 3. Analysis of the top-10 most frequently publishing countries regarding microencapsulation.

microencapsulation. Ethylcellulose, methylcellulose and hypromellose are discussed as encapsulating polymers; and the importance of protective colloids, plasticizers and surfactants is also discussed. The second section covers various techniques utilized to produce microcapsules, such as temperature-induced phase separation, emulsion solvent evaporation and film coating. The third section covers various end-use applications for microcapsules. That section is primarily focused on pharmaceutical applications, like modified release, enhanced efficacy and taste-masking; however, other end-use applications, like agricultural and cosmetic uses, are briefly covered as well.

Because this review is so extensive, it has been divided into three parts corresponding with the sections described above. This paper consists of Part 1, and Parts 2 and 3 will be covered in subsequent publications.

Literature search

SciFinder (Version 2007; The American Chemical Society) was utilized to identify the pertinent literature. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline, to search both journal and patent literature.

The literature was searched for ethylcellulose, methylcellulose and hypromellose and then narrowed using the concepts of microcapsule and microencapsulation. The

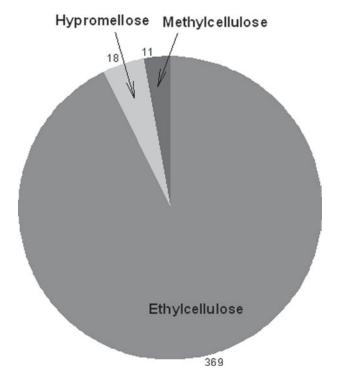


Figure 4. Analysis of the number of publications identified in this literature review by the type of encapsulating polymer. This analysis is based upon a total of 379 microencapsulation references where ethylcellulose, methylcellulose or hypromellose was used to achieve microencapsulation. Hence, more than one of these encapsulating polymers was investigated in some of the referenced studies.

resulting references were then studied to obtain the 379 references compiling this review.

Microencapsulation materials

As shown in Figure 4, it is apparent that ethylcellulose has been the most extensively used of the three encapsulating polymers. Hence, the majority of the review is dedicated to ethylcellulose. In addition to the three encapsulating polymers, the roles of protective colloids, plasticizers and surfactants are also briefly discussed.

Ethylcellulose

Ethylcellulose has been used extensively across multiple microencapsulation techniques and for various end-use applications. Table 1 lists 369 technique- and applicationoriented references identified where ethylcellulose was used to produce microcapsules. Ethylcellulose often has been an encapsulating polymer of choice due to its insolubility in water. An ethylcellulose membrane typically provides a barrier through which API can be released in modified fashion into aqueous media. For example, micro K EXTENCAPS and K-DUR tablets contain KCl encapsulated within a dissolution rate-modifying ethylcellulose barrier.

An important factor to consider when formulating microcapsules is the molecular weight (MW) or standard (std) viscosity grade of ethylcellulose utilized. Table 2 lists the std viscosity grades of ethylcellulose available for pharmaceutical use. The std grade is defined by both

ethoxyl substitution and the viscosity of a 5% solution of ethylcellulose in a toluene/alcohol (80/20) cosolvent mixture, which has been equilibrated to 25°C. Higher viscosity grades correspond with higher polymer MWs.

A schematic of the molecular structure of ethylcellulose is shown in Figure 5a. Anhydroglucose units make up the cellulose backbone, and the individual units can be substituted at the 2, 3 and/or 6 positions. For std grades of ethylcellulose, the degree of ethoxyl substitution ranges from 2.5 to 2.6; and this corresponds to an average ethoxyl content of 48.0-49.5% (w/w).

Utilization of ethylcellulose in modified release applications typically involves applying a rate-modifying ethylcellulose barrier to a substrate, such as a microcapsule core, powder, granule, bead or tablet. Several studies have demonstrated a correlation between ethylcellulose viscosity grade and modified release performance²⁵⁻³⁵. Although some of these studies have concluded otherwise^{25-27,33}, most have demonstrated that greater modified release is achievable with higher viscosity grades. For example, Deasy et al.34 microencapsulated sodium salicylate within ethylcellulose of varying viscosity grades. Deasy et al. found that microcapsules of finer particle size and exhibiting slower drug release were obtained when ethylcellulose std 100 was used vs. ethylcellulose std 10. Assimopoulou and Papageorgiou³⁵ investigated various types of rate-modifying polymers and found that ethylcellulose provided the most suitable barrier properties for modified release of alkannin. Ethylcellulose std 10 provided microcapsules with suitable morphological

Table 1. References identified where ethylcellulose was used for microencapsulation.

Ethylcellulose references		
Abu-Izza et al., 1996 ¹¹⁴	Becourt et al., 2002 ⁶³	Chemtob et al., 1989 ¹¹⁵
Adikwu, 1995 ¹¹⁶	Becourt et al., 2002 ⁶⁴	Chen et al., 1994 ⁴²
Ahlert and Evert, 1995 ¹¹⁷	Bergisadi and Gurvardar, 1989 ¹¹⁸	Chen et al., 1995 ¹¹⁹
Al-Omran et al., 2002 ¹²⁰	Bettman et al., 1997 ¹²¹	Cheu et al., 2001 ²⁵
Al-Omran et al., 2002 ¹²²	Bhalerao et al., 2001 ¹²³	Chikamatsu et al., 1984 ⁷⁶
Al-Omran et al., 2002 ¹⁰⁸	Biju et al., 2004 ¹²⁴	Chow et al., 1998 ¹²⁵
Alam and Eichel, 1980 ¹²⁶	Bodmeier and Chen, 1989 ¹²⁷	Chowdary and Rao, 1984 ¹²⁸
Alam and Eichel, 1982 ¹²⁹	Bodmeier and Chen, 1990 ⁷⁰	Chowdary and Nageswara Rao, 1985110
Alpar, 1981 ¹³⁰	Bodmeier and Wang, 1993 ¹³¹	Chowdary and Rao, 1985132
Alpar and Walters, 1981 ¹³³	Bodmeier et al., 1995 ¹³⁴	Chowdary and Rao, 1985135
Aly et al., 1993 ¹³⁶	Bruschi et al., 2002 ⁶²	Chowdary and Murty, 1985137
Amperiadou and Georgarakis, 1995138	Calanchi and Gentilini, 198594	Chowdary and Rao, 1986139
Anderson, 1971 ¹⁴⁰	Cameroni et al., 1985 ¹⁴¹	Chowdary and Babu, 1988 ¹⁴²
Anderson et al., 1972 ¹⁴³	Carpov et al., 1982 ¹⁴⁴	Chowdhary and Ramesh, 1993 ¹⁴⁵
Andre-Abrant et al., 2001 ¹⁴⁶	Carpov et al., 1980 ¹⁴⁷	Chowdary and Ratna, 1993 ¹⁴⁸
Arabi et al., 1996 ²⁹	Cedrati et al., 1997 ¹⁴⁹	Chowdary and Sastry, 1997150
Assimopoulou and Papageorgiou, 2004 ³⁵	Chalabala, 1984 ⁵⁴	Chukwu et al., 1991 ¹⁵¹
Baichwal and Chidambharam, 1977 ⁵⁸	Chan and Heng, 1998 ²⁸	Cohen, 1986 ¹⁵²
Baichwal and Abraham, 1980 ⁵⁷	Charle et al., 1973 ¹⁵³	Cordes, 1972 ¹⁵⁴
Barik et al., 1993 ¹⁵⁵	Chattaraj and Das, 1990 ¹⁵⁶	Cowsar et al., 1978 ¹⁵⁷
Barik et al., 2004 ⁶⁰	Chemtob, 1984 ¹³	Cowsar, 1980 ¹⁵⁸
Barzola et al., 2001 ⁶⁵	Chemtob, 1987 ¹⁴	Cristallini et al., 1984 ¹⁵⁹
Beatty, 1982 ⁵⁰	Chemtob et al., 1986 ¹⁶⁰	Curea et al., 1987 ¹⁶¹
Becourt et al., 200261	Chemtob et al., 1986162	D'Onofrio et al., 1979 ¹⁶³

References are listed alphabetically by the first author's or inventor's last name. Table 1 is continued in the appendix.

Table 2. Ethylcellulose grades commercially available for pharmaceutical use.

Commercial name ^a	Mfr.	Ethoxyl (%)	Viscosity range ^b (mPa-s)
ETHOCEL™ Std 4	DWC	48.0-49.5	3-5.5
ETHOCEL™ Std 7	DWC	48.0-49.5	6-8
ETHOCEL™ Std 10	DWC	48.0-49.5	9-11
ETHOCEL™ Std 14	DWC	48.0-49.5	12.6-15.4
ETHOCEL™ Std 20	DWC	48.0-49.5	18-22
ETHOCEL™ Std 45	DWC	48.0-49.5	41-49
ETHOCEL™ Std 100	DWC	48.0-49.5	90-110
Aqualon Ethylcellulose N7	Hercules	48.0-49.5	5.6-8
Aqualon Ethylcellulose N10	Hercules	48.0-49.5	8-11
Aqualon Ethylcellulose N14	Hercules	48.0-49.5	12-16
Aqualon Ethylcellulose N22	Hercules	48.0-49.5	18-24
Aqualon Ethylcellulose N50	Hercules	48.0-49.5	40-52
Aqualon Ethylcellulose N100	Hercules	48.0-49.5	80-105

Information on the commercially available grades of ethylcellulose was gathered from the ETHOCEL™ and Hercules websites, respectively.

bViscosity of 5% solution measured at 25°C in a Ubbelohde viscometer. The cosolvent mixture is 80% toluene and 20% alcohol. DWC, Dow Wolff Cellulosics; TM, Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.

> HO CH₃

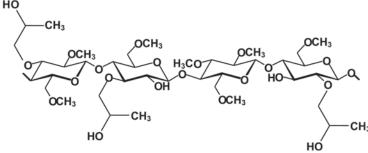


Figure 5. Schematics of the molecular structures of ethylcellulose (a), methylcellulose (b) and hypromellose (c).

properties, but the release rate of alkannin was too rapid. Ethylcellulose std 45, however, provided microcapsules with suitable morphological properties, and alkannin release was sufficiently modified.

Ethylcellulose can provide durable coatings which allow substrates to withstand impact. For example, ETHOCELTM (Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow) is utilized to

^aStd, standard.

apply impact-resistant coatings, which protect bowling pins from damage after repeated impact³⁶. Several studies have been conducted where ethylcellulose was used to produce microcapsules, which were subsequently compressed to tablets or pellets (see Table 3, which will be covered in more detail in Part 3). A number of these studies demonstrated correlation between resistance to barrier rupture during compression and the viscosity grade of ethylcellulose utilized. The K-DUR patent by Hsiao and Chou¹² (discussed earlier) specifies the preferred usage of a higher viscosity grade of ethylcellulose, like std 100, in order to reduce incidence of barrier rupture during tablet compression. Hsiao and Chou further add that a lower viscosity grade, such as std 10, could be used to formulate a rate-modifying barrier when microcapsules are not compressed (e.g. capsule formulations). Gantt et al.³⁷ and Venkatesh and Kramer³⁸ specify in separate patent applications that ethylcellulose std 100 is a preferred encapsulating polymer because it allows microencapsulated KCl crystals to retain diffusion controlling characteristics even after compression.

Some groups have published studies correlating encapsulation efficiency with viscosity grade^{25,39}. Using acyclovir as model drug, Cheu et al.25 designed a multifactorial study to investigate the effects of ethylcellulose viscosity grade, concentration and barrier:core ratio on encapsulation efficiency, stability and dissolution performance. Cheu et al. found that encapsulation efficiency was increased when a higher viscosity grade of ethylcellulose was used. Uddin et al.39 tested a variety of microencapsulation techniques, polymers and corresponding viscosity grades to prepare microcapsules containing ascorbic acid. The purpose of encapsulating ascorbic acid was to improve its stability, modify its release and mask its acidic taste. Using the solvent evaporation technique (to be discussed in Part 2), Uddin et al. found that encapsulation efficiency was most improved by inclusion of plasticizer and use of a higher viscosity grade of ethylcellulose.

Uddin et al.39 also found that extent of microcapsule aggregation was decreased with both the addition of polyisobutylene (PIB; a protective colloid to be discussed later) and the use of a higher viscosity grade of ethylcellulose. Before the study of Uddin et al., however, Koida et al.40 identified a correlation between extent of microcapsule aggregation and viscosity grade of ethylcellulose. Koida et al. used PIB to reduce aggregation, but they found that aggregation could be further minimized using a higher viscosity grade of ethylcellulose.

Ethylcellulose has been used synergistically with other encapsulating polymers to achieve, for example, unique modified release performance. References were identified where ethylcellulose was used synergistically with other cellulose derivatives⁴¹⁻⁵², glycols⁵³⁻⁵⁹, acrylic acid derivatives⁶⁰⁻⁷², waxes^{34,53,58,73-81}, ion-exchange resins^{26,27,82-89} and activated carbon⁹⁰⁻⁹³.

An example of synergistic use of ethylcellulose with another cellulose derivative was published by Guyot and Fawaz⁴¹. Guyot and Fawaz used a solvent evaporation technique to produce microspheres containing nifedipine and ethylcellulose, nifedipine and an ethylcellulose/hydroxypropylcellulose combination or nifedipine ethylcellulose/hypromellose combination. Microspheres formulated using either polymer combination released nifedipine more slowly and more regularly than microspheres formulated with ethylcellulose alone. Nifedipine release from the microcapsules was best described using combined kinetics (zero- and first-order

Table 3. Application-oriented publications where microcapsules were utilized for multiparticulate compression.

Ethylcellulose references		Hypromellose references
Adikwu, 1995 ¹¹⁶	NL 7215117 A; Anon., 1974 ¹⁶⁴	Ayer et al., 1994 ⁹⁸
Al-Omran et al., 2002 ¹²⁰	Morishita et al., 1985 ¹⁶⁵	
Alpar, 1981 ¹³⁰	Morre et al., 2002 ¹⁶⁶	
Alpar and Walters, 1981 ¹³³	Murav'ev and Andreeva, 1987 ¹⁶⁷	
Ayer et al., 199498	Nikolaev et al., 1990168	
Baichwal and Chidambharam, 1977 ⁵⁸	Nikolayev and Gebre-Mariam, 1993169	
Baichwal and Abraham, 1980 ⁵⁷	Özyazici et al., 1996 ¹⁷⁰	
Chikamatsu et al., 1984 ⁷⁶	Raghubanshi et al., 1991 ¹⁷¹	
Chukwu et al., 1991 ¹⁵¹	Sajeev et al., 2002 ¹⁷²	
Curea et al., 1987 ¹⁶¹	Sevgi et al., 1994 ¹⁷³	
Dahlström and Eriksson, 1971 ¹⁷⁴	Shopova et al., 1987 ¹⁷⁵	
Farid et al., 1994 ¹⁷⁶	Singla and Nagrath, 1988 ⁵³	
Fekete, 1992 ¹¹¹	Tirkkonen and Paronen, 1993 ¹⁷⁷	
Gantt et al., 2000 ³⁷	Tsai and Huang, 1985 ⁵⁵	
He and Hou, 1989 ¹⁷⁸	Tuncel et al., 1996 ¹⁷⁹	
Hosny et al., 1998 ¹⁸⁰	Venkatesh and Kramer, 2003 ³⁸	
Hsiao and Chou, 1989 ¹²	Vitkova et al., 1986 ¹⁸¹	
Jalsenjak et al., 1980 ¹⁸²	Yazan et al., 1995 ¹⁸³	
Kassem et al., 1975 ¹⁸⁴	Zia et al., 1991 ¹⁸⁵	
Kondo et al., 1972 ¹⁸⁶		

No methylcellulose references were identified for this application. The references are arranged in similar format to those in Table 1.

kinetics or zero-order and Higuchi square-root kinetics). No burst effect was observed with any of the encapsulating barriers.

Baichwal and Abraham⁵⁷ and Tsai and Huang⁵⁵ published studies where ethylcellulose/polyethylene glycol combinations were used to formulate microcapsules. In both studies, ethylcellulose was formulated with varying concentrations of polyethylene glycol (PEG) 4000 to produce microcapsules for modified release. In the first study, Baichwal and Abraham found that increasing the PEG level within the ethylcellulose barrier resulted in faster metronidazole release. In addition to modifying release, microencapsulation facilitated tabletting. Tablets containing microencapsulated metronidazole were harder and less friable compared to tablets containing non-encapsulated metronidazole. In the second study, Tsai and Huang showed that modified release of indomethacin could be adjusted using ethylcellulose and varying levels of PEG during microencapsulation. Like Baichwal and Abraham, Tsai and Huang found that higher levels of PEG resulted in faster API release. Furthermore, in vivo animal studies demonstrated elevated and prolonged plasma levels following administration of indomethacin microencapsulated within ethylcellulose/PEG combinations. Plasma levels following administration of these microcapsules were superior to the levels achieved following administration of indomethacin microencapsulated within ethylcellulose alone.

Studies using synergistic combinations of ethylcellulose and acrylic acid derivatives were published by Bruschi et al., 62 Becourt et al. 64 and Bodmeier and Chen 70. Bruschi et al. developed a process to produce bi-layered microcapsules containing caffeine, which exhibited rapid release and also provided suitable taste-masking properties. The first (inner) barrier layer consisted of ethylcellulose and was applied by phase separation. The second (outer) barrier layer consisted of Eudragit E 100 and was applied via fluidized bed spray coating. The level of caffeine in the finished microcapsules was 67.5%, and the two barriers successfully masked API taste. The microcapsules, however, released 80% of encapsulated caffeine within 10 min.

Members from the same research group⁶⁴ prepared spherical agglomerates of telithromycin encapsulated within ethylcellulose and then spray-coated onto the ethylcellulose microcapsules an additional barrier layer consisting of Eudragit E 100. The final microcapsules contained 58.5% telithromycin, 6.5% ethylcellulose, 23.3% Eudragit E100 and 11.7% talc and were easily dispersed into aqueous media without agglomeration. The taste of telithromycin was successfully masked.

Bodmeier and Chen⁷⁰ produced polymeric nanosuspensions containing indomethacin using a microfluidization-solvent evaporation method. The polymeric nanoparticles exhibited both high encapsulation efficiency and reduced tendency to agglomerate. Nanoparticles containing indomethacin and ethylcellulose alone rapidly released API within 15 min.

Nanoparticles designed for modified release, however, contained indomethacin and a combination of ethylcellulose and poly(methyl methacrylate) (PMMA). Ethylcellulose and PMMA formed a barrier where the two polymers functioned synergistically to modulate API release.

Ethylcellulose has been used synergistically with fatty acids and waxes for such purposes as modified release, enhanced stability and processing improvements. Baichwal and Chidambharam⁵⁸ formulated ethylcellulose microcapsules containing ascorbic acid and then applied a seal coating consisting of stearic acid or PEG to the microcapsule surface. Ascorbic acid stability was then measured under high relative humidity. The authors found that maximum stability was attained when ascorbic acid was microencapsulated within ethylcellulose and subsequently sealed with 15-30% stearic acid. Microcapsules sealed with high levels of stearic acid, however, exhibited sticking problems during tabletting. In another study, Deasy et al.34 produced microcapsules containing sodium salicylate and ethylcellulose and furthermore applied a paraffin wax seal coating over the ethylcellulose barrier. Deasy et al. chose paraffin wax over other sealants because the paraffin wax seal coating more effectively modulated the dissolution rate of sodium salicylate. API release properties were affected by microcapsule size and the amount of seal coating applied. In yet another study, Shin and Koh⁷⁵ produced microcapsules containing methyldopa and ethylcellulose, and the microcapsules were sealed with spermaceti. Like Deasy et al., Shin and Koh found that the rate of methyldopa release could be modulated by microcapsule size and the amount of seal coating applied. Finally, Snipes and Wagner⁷⁴ produced microcapsules containing KCl, ethylcellulose and palmitic acid in order to achieve both rapid dispersion and modified release of KCl in GI media. The microcapsules, which were produced via fluidized bed spray coating, were relatively spherical (400-600 μm in diameter) and free-flowing. KCl microencapsulated within ethylcellulose alone served as the control. Ethylcellulose/palmitic acid microcapsules released KCl at a comparable rate to ethylcellulose microcapsules. Unlike the ethylcellulose microcapsules, however, ethylcellulose/palmitic acid microcapsules did not agglomerate upon addition to GI media.

Ethylcellulose has been used synergistically with ion-exchange resins and activated carbon. Ion-exchange resins and activated carbon serve similar functions in that they are substrates upon which to adsorb APIs. Moldenhauer and Nairn developed a method to produce predominantly mono-nucleated microcapsules containing theophylline and ion-exchange resins cross-linked to varying degrees (DOWEXTM 1X2, 1X4 and 1X8 resins, all from The Dow Chemical Company, Midland, MI). (DOWEXTM is a trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.) The theophylline-ion-exchange resin cores were generated and subsequently microencapsulated

within ethylcellulose⁸⁶. The rate of theophylline release from the microcapsules was influenced by the degree of cross-linking of the ion-exchange resin, the amount of ethylcellulose barrier applied and the smoothness of the applied ethylcellulose barrier. When ion-exchange resin with low cross-linking was used, API release appeared to follow membrane-controlled release kinetics. When ion-exchange resin with high cross-linking was used, API release appeared to follow particle diffusion-controlled release kinetics. Ishibashi et al.92 developed microcapsules containing aspirin adsorbed onto medicinal carbon cores and encapsulated the newly formed cores within ethylcellulose. Microcapsule yield was increased using highly concentrated ethylcellulose solutions into which the aspirin-medicinal carbon cores were dispersed. API release rates were compared from the non-encapsulated aspirin-medicinal carbon cores vs. the same cores microencapsulated within ethylcellulose, and release rates were significantly more modified from the microencapsulated cores vs. the unencapsulated cores. Both adsorption of aspirin onto medicinal carbon and microencapsulation within ethylcellulose were necessary to achieve desired modified release performance.

Ethylcellulose references are organized in Tables 4-9 according to the processing techniques utilized to achieve microencapsulation. Ethylcellulose has been used as an encapsulating polymer with all of the microencapsulation techniques identified, but it has been most frequently used with temperature-induced phase separation (Table 4, 51 references). In addition, ethylcellulose has been commonly used as the encapsulating polymer for emulsion solvent evaporation (Table 5, 33 references), solution-based solvent evaporation (Table 6, 26 references), film coating (Table 7, 21 references), nonsolvent addition (Table 8, 19 references) and spray drying (Table 9, 11 references). Refer to Part 2 of the review for a more detailed explanation of microencapsulation techniques.

Regarding end-use applications, ethylcellulose has been most frequently used to achieve modified release (Table 10, 67 references). Beyond modified release, ethylcellulose has commonly been used for applications like enhanced efficacy (Table 11, 42 references), compression of microcapsules to form tablets (Table 3, 39 references), stability improvement (Table 12, 24 references) and improved safety (Table 13, 19 references). Refer to Part 3 of the review for a more detailed discussion of applications for ethylcellulose microcapsules.

Methylcellulose

In contrast to ethylcellulose, methylcellulose has not been referenced extensively. Of the 379 microencapsulation references, only 11 mentioned the use of methylcellulose. Even then, methylcellulose was either used in conjunction with other encapsulating polymers or was an alternative to a preferred encapsulating polymer, such

Table 4. Process-oriented publications where temperature-induced phase separation was utilized to make microcapsules.

Ethylcellulose references			Hypromellose references
Alam and Eichel, 1980 ¹²⁹	Lin and Yang, 1986 ¹⁸⁷	Vitkova et al., 1994 ¹⁸⁸	Kaltsatos et al., 1989189
Alam and Eichel, 1982 ¹²⁶	Lin and Chen, 1992190	Whitaker Sr., 1991 ¹⁹¹	
Anderson et al., 1972 ¹⁴³	Miller and Anderson, 1964 ⁶	Wieland-Berghausen et al., 2002192	
Bettman et al., 1997 ¹²¹	Morse, 1971 ⁵⁹		
Calanchi and Gentilini, 198594	Morse and Hammes, 1974 ¹⁹³		
Cameroni et al., 1985 ¹⁴¹	Morse et al., 1978 ¹⁹⁴		
Carpov et al., 1980147	Motycka and Nairn, 1979 ⁸⁹		
Carpov et al., 1982144	Nasa and Yadav, 1989 ¹⁹⁵		
Chemtob et al., 1986160	NL 6611661; Anon., 1967 ¹⁹⁶		
Chemtob et al., 1986162	Nixon and Wong, 1990 ¹⁹⁷		
Deasy et al., 1980 ³⁴	Powell, 1993 ¹⁹⁸		
Doshi et al., 1994 ¹⁹⁹	Rak et al., 1984 ²⁰⁰		
el-Helw, 1987 ²⁰¹	Safwat and El-Shanawany, 1989 ⁷¹		
Fan et al., 1996 ²⁰²	Samejima et al., 1982 ¹⁰⁶		
Fekete et al., 1989112	Samejima et al., 1985 ^{47,48}		
Friend et al., 1997 ²⁰³	Samejima et al., 1983 ⁸⁰		
Inoe, 1992 ²⁰⁴	Shin and Koh, 1989 ⁷⁵		
John, 1979 ²⁰⁵	Singh and Robinson, 1988 ¹¹³		
Kaltsatos et al., 1989 ¹⁸⁹	Singh and Robinson, 1990 ³⁰		
Kato, 1981 ⁷⁹	Sveinsson and Kristmundsdottir, 1992 ²⁰⁶		
Koida et al., 1983 ⁴⁰	Szretter and Zakrzewski, 1984 ²⁰⁷		
Koida et al., 1986 ²⁰⁸	Uddin et al., 2001 ³⁹		
Kristl et al., 1991 ²⁰⁹	Vitkova et al., 1983 ⁵⁶		
Lin, 1985 ²¹⁰	Vitkova et al., 1984 ²¹¹		

No methylcellulose references were identified where temperature-induced phase separation was used. The references are arranged in similar format to those in Table 1.

Table 5. Process-oriented publications where emulsion solvent evaporation was utilized to make microcapsules.

Ethylcellulose references		Hypromellose references
Abu-Izza et al., 1996 ¹¹⁴	Morishita et al., 1981 ²¹²	Guyot and Fawaz, 1998 ⁴¹
Amperiadou and Georgarakis, 1995 ¹³⁸	Mortada, 1982 ²¹³	
Bhalerao et al., 2001 ¹²³	Murthy and Chowdary, 200496	
Bodmeier and Chen, 1989 ¹²⁷	Murthy and Chowdary, 2005 ²¹⁴	
Bodmeier and Chen, 1990 ⁷⁰	Perez-Martinez et al., 2001 ²¹⁵	
Cheu et al., 2001 ²⁵	Ravichandran et al., 2001 ²¹⁶	
Das, 1991 ²¹⁷	Ruiz et al., 1990 ²¹⁸	
Elbahri and Taverdet, 2005 ²¹⁹	Sheorey et al., 1991 ²²⁰	
Goto et al., 1985 ³²	Sriwongjanya and Bodmeier, 1997 ⁸²	
Guyot and Fawaz, 1998 ⁴¹	Uno et al., 1984 ²²¹	
Huang and Ghebre-Sellassie, 1989 ²²²	Wieland-Berghausen et al., 2002192	
Jones and Pearce, 1995 ²²³	Yang et al., 2000 ²²⁴	
Kentepozidou and Kiparissides, 1995 ²²⁵	Yang et al., 2001 ²²⁶	
Kiritani, 1973 ²²⁷	Yang et al., 2001 ²²⁸	
Lin and Wu, 1999 ²²⁹	Yang et al., 2005 ²³⁰	
Morishita et al., 1973 ²³¹	Zandi et al., 1998 ²³²	
Morishita et al., 1976 ²³³		

No methylcellulose references were identified where emulsion solvent evaporation was used. The references are arranged in similar format to those in Table 1.

Table 6. Process-oriented publications where solvent

evaporation was utilized to ma	ke microcapsules.
Ethylcellulose references	
Andre-Abrant et al., 2001 ¹⁴⁶	Manekar et al., 1992 ²³⁴
Arabi et al., 1996 ²⁹	Manekar et al., 1993 ²³⁵
Assimopoulou and Papageorgiou, 2004 ³⁵	Moldenhauer and Nairn, 1991 ⁸⁵
Cristallini et al., 1984159	Moldenhauer and Nairn, 199284
Dubernet et al., 1991 ²³⁶	Moldenhauer and Nairn, 199483
Elbary et al., 2001 ⁶⁶	Rhee et al., 1997 ⁶⁷
Ghorab et al., 1990 ²³⁷	Sarin et al., 1985 ⁴⁹
Ibrahim et al., 1990 ²³⁸	Tsujiyama et al., 198946
Khalil and El-Gamal, 1973 ²³⁹	Uchida et al., 1987 ²⁴⁰
Kosenko et al., 1986 ²⁴¹	Uchida et al., 199244
Kristmundsdottir and	Uddin et al., 2001 ³⁹
Ingvarsdottir, 1994 ²⁴²	
Ku and Kang, 1991 ²⁴³	Yoshida, 1972 ²⁴⁴
Manekar et al., 1992 ²⁴⁵	Zhu et al., 1992 ²⁴⁶

No methylcellulose or hypromellose references were identified where solvent evaporation was used. The references are arranged in similar format to those in Table 1.

as ethylcellulose. Refer to Table 14 for the methylcellulose references.

Calanchi and Gentilini94 formulated granules containing a highly water-soluble API, such as metoclopramide hydrochloride, and a hydrocolloid, such as methylcellulose or hypromellose; and the granules were subsequently microencapsulated within ethylcellulose via coacervation or fluidized bed spray coating. The hydrocolloid and ethylcellulose barrier functioned synergistically to modify release of the highly soluble API for at least 12 h. Although either methylcellulose or hypromellose could be used as hydrocolloid, hypromellose was more frequently used in the patent examples.

Besides the work of Calanchi and Gentilini, a patent by Fuji Photo Film Co., Ltd. was the only other reference

Table 7. Process-oriented publications where film coating was utilized to make microcapsules.

Ethylcellulose references	Methylcellulose references	Hypromellose references
Becourt et al., 2002 ⁶¹	Zulkarnain, 1996 ²⁴⁷	Zulkarnain, 1996 ²⁴⁷
Becourt et al., 200264		
Bruschi et al., 2002 ⁶²		
Calanchi and Gentilini, 1985 ⁹⁴		
Cordes, 1972 ¹⁵⁴		
Elbary et al., 2001 ⁶⁶		
Fukumori et al., 1991 ²⁴⁸		
Fukumori et al., 1991 ²⁴⁹		
Giannini and Bashour, 1989 ⁹⁷		
Han and Li, 2001 ²⁵⁰		
Ichikawa and Fukumori, 2000 ⁷²		
Kassem et al., 197881		
Kim et al., 1999 ²⁵¹		
Knezevic et al., 1998 ²⁵²		
Lippold et al., 1989 ¹⁰⁹		
Persson and Lindblom, 1981 ²⁵³		
Rhee et al., 1997 ⁶⁷		
Senjkovic and Jalsenjak, 1984 ²⁵⁴		
Snipes and Wagner, 1989 ⁷⁴		
Wieland-Berghausen et al., 2002 ¹⁹²		
Zulkarnain, 1996 ²⁴⁷		
TI	l :::1 £	4 - 41 3 - T-1-1 - 1

The references are arranged in similar format to those in Table 1.

identified where methylcellulose was used as a primary ingredient for microencapsulation (1983). In the Fuji patent, ink toner was microencapsulated for printing applications. An oil-in-water (o/w) emulsion was formulated,

and methylcellulose was used to stabilize the emulsified oil phase. The emulsified droplets were eventually solidified, yielding a dry powder consisting of microencapsulated ink toner.

Golzi et al.95 produced ethylcellulose microcapsules to modify release and/or mask API taste. The microcapsules contained API and additives dispersed throughout the ethylcellulose barrier. Ethylcellulose was dissolved in cyclohexane, and the API and additives were subsequently dispersed, rather than dissolved, into the polymer solution. The presence of methylcellulose as additive modulated such properties as barrier permeability, mechanical resistance, plasticity and aesthetics (color, odor or taste).

Table 8. Process-oriented publications where nonsolvent addition was utilized to make microcapsules.

	E
Ethylcellulose references	
Al-Omran et al., 2002 ¹⁰⁸	Motycka and Nairn, 1979 ⁸⁹
Barik et al., 1993 ¹⁵⁵	Nixon and Meleka, 1984 ²⁵⁵
Barik et al., 2004 ⁶⁰	Nixon and Nimmannit, 1985 ²⁵⁶
D'Onofrio et al., 1979 ¹⁶³	Nixon and Wong, 1990 ¹⁹⁷
El-Helw and Bayomi, 2000 ²⁵⁷	Salib et al., 1976 ²⁵⁸
Itoh et al., 1980 ²⁵⁹	Wu et al., 1993 ²⁶⁰
Khalil and El-Gamal, 1973 ²³⁹	Wu et al., 1994 ⁴³
Khanna et al., 1982 ⁷⁷	Yazici et al., 1996 ²⁶¹
Moldenhauer and Nairn, 199284	Zhang et al., 2000 ^{26,27}
Moldenhauer and Nairn, 199483	

No methylcellulose or hypromellose references were identified where nonsolvent addition was used. The references are arranged in similar format to those in Table 1

Why is methylcellulose a less frequently referenced polymer in microencapsulation compared to ethylcellulose? Unlike ethylcellulose, methylcellulose is a hydrophilic, water-soluble cellulose ether. Methylcellulose, when used as encapsulating polymer, is unable to provide modified release performance to the same extent as ethylcellulose. When methylcellulose microcapsules are added to water, the thin methylcellulose membranes

Table 9. Process-oriented publications where spray drying was utilized to make microcapsules.

Ethylcellulose references	Methylcellulose references	Hypromellose references
Forni et al., 1991 ²⁶²	Du et al., 2001 ²⁶³	Lin et al., 2004 ²⁶⁴
JP 58035111 A2; Anon., 1981 ²⁶⁵		Du et al., 2001 ²⁶³
Kitakoji et al., 1973 ²⁶⁶		Wan et al., 1992 ⁹⁹
Liao et al., 2003 ²⁶⁷		
Lin et al., 2004 ²⁶⁴		
Mao and Zhang, 1994 ²⁶⁸		
Sfar and Karoui, 1989 ⁷³		
Uddin et al., 2001 ³⁹		
Vo et al., 2000269		
Yamada et al., 1996 ²⁷⁰		
Zhang et al., 2000 ^{26,27}		

The references are arranged in similar format to those in Table 1.

Table 10. Application-oriented publications where microcapsules were utilized to achieve modified release.

Ethylcellulose references		
Adikwu, 1995 ¹¹⁶	Hsiao and Chou, 1989 ¹²	Rak et al., 1984 ²⁷¹
Alpar, 1981 ¹³⁰	Hu et al., 1999 ²⁷²	Rani et al., 1994 ²⁷³
Alpar and Walters, 1981 ¹³³	Ishibashi et al., 1985 ⁹¹	Sajeev et al., 2002172
Ayer et al., 199498	Jalsenjak et al., 1980 ¹⁸²	Samejima et al., 1985 ^{47,48}
Baichwal and Abraham, 1980 ⁵⁷	Karakasa et al., 1994 ²⁷⁴	Sevgi et al., 1994 ¹⁷³
Bergisadi and Gurvardar, 1989 ¹¹⁸	Kato, 1981 ²⁷⁵	Shindo, 1988 ²⁷⁶
Biju et al., 2004 ¹²⁴	Kato and Nemoto, 1978 ²⁷⁷	Shopova et al., 1987 ¹⁷⁵
Chukwu et al., 1991 ¹⁵¹	Kato et al., 1979 ²⁷⁸	Tanaka, 1978 ²⁷⁹
Cohen, 1986 ¹⁵²	Kimura et al., 1999 ²⁸⁰	Tsai and Huang, 1985 ⁵⁵
Curea et al., 1987 ¹⁶¹	Kondo et al., 1972 ¹⁸⁶	Tsujiyama et al., 199045
Dailey and Dowler, 1995 ²⁸¹	Kozlova et al., 1977 ²⁸²	Uchida and Goto, 1988 ²⁸³
Deshpande and Njikam, 1977 ²⁸⁴	Lavasanifar et al., 1997 ²⁸⁵	Uchida et al., 1989 ²⁸⁶
Ducroux et al., 1984 ²⁸⁷	Lee et al., 1984 ³³	Utsuki et al., 1996 ²⁸⁸
Echigo et al., 1982 ²⁸⁹	Lin et al., 1988 ²⁹⁰	Venkatesh and Kramer, 2003 ³⁶
Fernandez-Urrusuno et al., 2000 ²⁹¹	Lippmann et al., 1981 ¹¹	Vitkova et al., 1986181
Gantt et al., 2000 ³⁷	Maysinger and Jalsenjak, 1983 ²⁹²	Yalabik-Kas, 1983 ²⁹³
Georgiev et al., 199469	Morre et al., 2002 ¹⁶⁶	Yazan et al., 1995 ¹⁸³
Gold, 2001 ²⁹⁴	Murav'ev and Andreeva, 1987167	Yokota et al., 1994 ⁹⁰
Golzi et al., 2004 ⁹⁵	Nikolayev and Gebre-Mariam, 1993169	Zia et al., 1991 ¹⁸⁵
Goto, 1994 ²⁹⁵	Okamoto et al., 1986 ²⁹⁶	
Goto et al., 1973 ²⁹⁷	Özyazici et al., 1996 ¹⁷⁰	
Guo and Xu, 1998 ²⁹⁸	Portnyagina et al., 1991 ²⁹⁹	
He and Hou, 1989 ¹⁷⁸	Putcha et al., 2005 ³⁰⁰	
Hosny et al., 1998 ¹⁸⁰	Raghubanshi et al., 1991171	

The references are arranged in similar format to those in Table 1. Table 10 is continued in the appendix.

Table 11. Application-oriented publications where microcapsules were utilized to enhance efficacy

Ethylcellulose references		Hypromellose references
Ayer et al., 1994 ⁹⁸	Morishita et al., 1985 ¹⁶⁵	Ayer et al., 199498
Barzola et al., 2001 ⁶⁵	Murgu et al., 1981 ³⁰¹	Hasçiçek et al., 2003 ¹⁰⁰
Beatty, 1982 ⁵⁰	Nemoto and Kato, 1981302	
Biju et al., 2004 ¹²⁴	Nemoto and Kato, 1984 ³⁰³	
Curea et al., 1987 ¹⁶¹	Nikolayev and Gebre-Mariam, 1993 ¹⁶⁹	
Dahlström and Eriksson, 1971 ¹⁷⁴	Okamoto et al., 1986 ²⁹⁶	
Dailey and Dowler, 1995 ²⁸¹	Palomo et al., 1996 ³⁰⁴	
Dailey and Dowler, 1996 ³⁰⁵	Portnyagina et al., 1991 ²⁹⁹	
Echigo et al., 1982 ²⁸⁹	Rak et al., 1984 ²⁷¹	
Eley et al., 1992 ³⁰⁶	Shindo, 1988 ²⁷⁶	
Guo and Xu, 1998 ²⁹⁸	Takada, 2000 ³⁰⁷	
Hu et al., 1999 ²⁷²	Tsai and Huang, 1985 ⁵⁵	
Jouffroy, 1984 ³⁰⁸	Tsujiyama et al., 199045	
Karakasa et al., 1994 ²⁷⁴	Tuncel et al., 1996 ¹⁷⁹	
Kato, 1981 ²⁷⁵	Uchida et al., 1989 ²⁸⁶	
Kato and Nemoto, 1978 ²⁷⁷	Utsuki et al., 1996 ²⁸⁸	
Kato et al., 1979 ²⁷⁸	Wang et al., 1993 ³⁰⁹	
Kato et al., 1985 ³¹⁰	Wang et al., 1993 ³¹¹	
Kimura et al., 1999 ²⁸⁰	Wang et al., 1995 ³¹²	
Lin et al., 1988 ²⁹⁰	Wang et al., 1996 ³¹³	
Matsumoto and Ugajin, 1989314	Zhang et al., 1993315	

No references were identified where methylcellulose microcapsules were used to enhance efficacy. The references are arranged in similar format to those in Table 1.

Table 12 Application-oriented publications where microcapsules were utilized to improve stability

Ethylcellulose references		Hypromellose references
Anderson, 1971 ¹⁴⁰	NL 7215117 A; Anon., 1974 ¹⁶⁴	Ayer et al., 1994 ⁹⁸
Ayer et al., 199498	Morishita et al., 1985165	
Baichwal and Chidambharam, 1977 ⁵⁸	Morse and Hammes, 1972 ³¹⁶	
Beatty, 1982 ⁵⁰	Palomo et al., 1996 ³⁰⁴	
Cedrati et al., 1997 ¹⁴⁹	Rani et al., 1994 ²⁷³	
Cowsar et al., 1978 ¹⁵⁷	Sajeev et al., 2002 ¹⁷²	
Goto et al., 1973 ²⁹⁷	Sakuma and Atsumi, 1990 ³¹⁷	
Harte, 1978 ³¹⁸	Singla and Nagrath, 1988 ⁵³	
Heintz and Teipel, 2000 ³¹⁹	Szretter and Zakrzewski, 1987320	
Kallstrand et al., 1986 ³²¹	Wang et al., 1995 ³¹²	
Kantor et al., 1989 ³²²	Wang et al., 1996 ³¹³	
Kassem et al., 1975 ¹⁸⁴	Yokoyama and Shibata, 1987 ³²³	

No references were identified where methylcellulose microcapsules were used to improve stability. The references are arranged in similar format to those in Table 1.

rapidly hydrate. Dissolution of methylcellulose follows, leaving the microcapsule cores without rate-modifying barriers.

A schematic of the molecular structure of methylcellulose is shown in Figure 5b. Methylcellulose is methoxylated at the 2, 3 and/or 6 positions of the anhydroglucose units. The degree of methoxyl substitution ranges from 1.6 to 1.9, which corresponds to an average substitution level of 27.5-31.5% (w/w).

Microencapsulation is frequently executed in either an organic solution or an emulsion system containing organic solvent, and the encapsulating polymer is typically dissolved within the solvent. In contrast to ethylcellulose, there are few organic solvent or cosolvent choices for methylcellulose. Cosolvent systems able to dissolve methylcellulose may require the presence of highly regulated or harmful solvents, like methylene chloride. In contrast, ethylcellulose can be easily dissolved in relatively nontoxic solvents, like ethanol or ethyl acetate^{52,84,96}. Lack of solvent choices limits feasibility of producing methylcellulose microcapsules.

Hypromellose

A schematic of the molecular structure of hypromellose is shown in Figure 5c. Hypromellose is either methoxylated or hydroxypropoxylated at the 2, 3 and/or 6 positions of the anhydroglucose units. The degree of methoxyl substitution ranges from 1.2 to 2.0, which corresponds to an average substitution level ranging from 19.0 to 30.0% (w/w). The degree of hydroxypropoxyl substitution

Table 13. Application-oriented publications where microcancules were utilized to reduce toxicity

Ethylcellulose references	Methylcellulose references
Barzola et al., 200165	Cohen, 1986 ¹⁵²
Bergisadi and Gurvardar, 1989 ¹¹⁸	
Biju et al., 2004 ¹²⁴	
Cohen, 1986 ¹⁵²	
Dahlström and Eriksson, 1971 ¹⁷⁴	
Dailey and Dowler, 1995 ²⁸¹	
Eley et al., 1992 ³⁰⁶	
Fernandez-Urrusuno et al., 2000 ²⁹¹	
Hsiao and Chou, 1989 ¹²	
Kato and Nemoto, 1978 ²⁷⁷	
Lavasanifar et al., 1997 ²⁸⁵	
Lee et al., 1984 ³³	
Lippmann et al., 1981 ¹¹	
Murgu et al., 1981 ³⁰¹	
Nemoto and Kato, 1984303	
Okamoto et al., 1986 ²⁹⁶	
Putcha et al., 2005 ³⁰⁰	
Shindo, 1988 ²⁷⁶	
Vitkova et al., 1986 ¹⁸¹	

No references were identified where hypromellose microcapsules were used to reduce toxicity. The references are arranged in similar format to those in Table 1.

ranges from 0.1 to 0.3, which corresponds to an average substitution level ranging from 4.0 to 12.0%. There are various viscosity grades and chemistries of hypromellose, depending upon MW, methoxyl and hydroxypropoxyl contents, as outlined in Tables 15 and 16.

Like methylcellulose, hypromellose has not been as commonly referenced as ethylcellulose to formulate microcapsules. Hypromellose has, however, been referenced to a greater extent than methylcellulose (see Table 14). In fact, hypromellose is present as a synergistic encapsulating polymer in CIPRO Oral Suspension.

The Orange Book patents for CIPRO Oral Suspension reveal that ciprofloxacin is microencapsulated within a mixture of Eudragit NE 30D and hypromellose in order to mask the unpleasant taste of ciprofloxacin without hindering its release in either strongly or weakly acidic media^{8,9}. The combination of Eudragit NE 30 D and hypromellose provides optimal taste-masking followed immediately by rapid API release at pH 1 and 4.5. Microencapsulation is achieved via fluidized bed spray coating using a Wurster insert. Eudragit NE 30D provides the insoluble portion of the coating. Hypromellose, which serves as the pore-forming component, quickly dissolves following oral administration and allows gastric media to rapidly penetrate the barrier and dissolve ciprofloxacin for subsequent release. A low-viscosity hypromellose grade equivalent to METHOCELTM E3PLV (see Tables 15) is used in the patent examples. (METHOCELTM is a trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.) Most preferably, a combination of Eudragit NE 30D and hypromellose is used at a ratio of 100:40.

Table 14. References identified where methylcellulose or hypromellose was used for microencapsulation.

1
Hypromellose references
Ayer et al., 199498
Calanchi and Gentilini, 198594
Du et al., 2001 ²⁶³
Gantt et al., 2000 ³⁷
Giannini and Bashour, 1989 ⁹⁷
Gold, 2001 ²⁹⁴
Golzi et al., 2004 ⁹⁵
Guyot and Fawaz, 199841
Hasçiçek et al., 2003100
Kaltsatos et al., 1989189
Lin et al., 2004 ²⁶⁴
Morishita et al., 1985 ¹⁶⁵
Pöllinger et al., 1997 ⁸
Pöllinger et al., 1999 ³²⁵
Pöllinger et al., 2000 ⁹
Venkatesh and Kramer, 2003 ³⁸
Wan et al., 1992 ⁹⁹
Zulkarnain, 1996 ²⁴⁷

The references are arranged in similar format to those in Table 1.

discussed earlier, Calanchi and Gentilini94 granulated a highly water-soluble API together with a hydrocolloid, preferably hypromellose, followed by microencapsulation of the granules within ethylcellulose. The presence of hypromellose in the microcapsule core enabled matrix-type modified release via polymeric swelling upon contact with dissolution media. The matrix-type modified release imparted by hypromellose coupled with the barrier-type modified release imparted by ethylcellulose synergistically modified release of highly water-soluble APIs, such as metoclopramide HCl.

In another example, Gantt et al.37 formulated microcapsules containing KCl, where ethylcellulose was used as the encapsulating polymer to achieve modified release. The ethylcellulose barrier was applied via coacervation (see discussion of coacervation in Part 2). After the ethylcellulose barrier was applied, an outer layer consisting of hypromellose and PEG was applied via fluidized bed spray coating. The hypromellose/ PEG layer served as an enhanced tablet binder and to minimize rupture of the underlying ethylcellulose barrier during compression. The hypromellose/PEG layer served as an enhanced binder because a minimal amount of this binder was necessary to facilitate suitable tablet hardness. In addition, the hypromellose/ PEG layer allowed the use of lower compaction pressure, which also helped minimize rupture of the ratemodifying ethylcellulose barrier.

Similarly, Venkatesh and Kramer38 developed microcapsules containing KCl where ethylcellulose was used as the encapsulating polymer. Following coacervation of the rate-modifying ethylcellulose barrier, an outer layer consisting of hypromellose and PEG was applied to the microcapsules to protect the underlying ethylcellulose

Table 15. Dow Wolff Cellulosics' commercially available methylcellulose and hypromellose grades.

Commercial name ^a	Mfr.	Chemistry type ^b	MO ^c (%)	HPOd (%)	Viscosity range
METHOCEL™ A15PLV	DWC+	MC	27.5-31.5	0	12-18 ^e
METHOCEL™ A4CP	DWC+	MC	27.5-31.5	0	300560^{e}
METHOCEL™ A15CP	DWC ⁺	MC	27.5-31.5	0	1125-2100 ^e
METHOCEL™ A4MP	DWC ⁺	MC	27.5-31.5	0	$3000-5600^{\rm e}$
METHOCEL™ E3PLV	DWC ⁺	HPMC 2910	28-30	7-12	$2.4 - 3.6^{\mathrm{f}}$
METHOCEL™ E5PLV	DWC+	HPMC 2910	28-30	7-12	$4-6^{\rm f}$
METHOCEL™ E6PLV	DWC+	HPMC 2910	28-30	7-12	$4.8-7.2^{f}$
METHOCEL™ E15PLV	DWC ⁺	HPMC 2910	28-30	7-12	$12-18^{\rm f}$
METHOCEL™ E50PLV	DWC ⁺	HPMC 2910	28-30	7-12	4060^{f}
METHOCEL™ E4MP	DWC ⁺	HPMC 2910	28-30	7-12	$2663 - 4970^{\mathrm{f}}$
METHOCEL™ E10MP CR	DWC ⁺	HPMC 2910	28-30	7-12	9525-17,780 ^f
METHOCEL™ F4PLV	DWC+	HPMC 2906	27-30	4-7.5	$3.7 - 5.3^{\rm f}$
METHOCEL™ F50P	DWC+	HPMC 2906	27-30	4-7.5	4060^{f}
METHOCEL™ F4MP	DWC^+	HPMC 2906	27-30	4-7.5	$2663 - 4970^{\mathrm{f}}$
METHOCEL™ K3PLV	DWC^+	HPMC 2208	19-24	7-12	$2.4 - 3.6^{\mathrm{f}}$
METHOCEL™ K100PLV	DWC ⁺	HPMC 2208	19-24	7-12	$80-120^{f}$
METHOCEL™ K4MP	DWC+	HPMC 2208	19-24	7-12	$2663 - 4970^{\mathrm{f}}$
METHOCEL™ K15MP	DWC+	HPMC 2208	19-24	7-12	13,275-24,780 ^f
METHOCEL™ K100MP	DWC+	HPMC 2208	19-24	7-12	75,000-140,000 ^f

Information was gathered from the METHOCELTM website.

Table 16. Hercules' commercially available methylcellulose and hypromellose grades.

Commercial name $^{\alpha}$	Mfr.	Chemistry type $^{\beta}$	Nominal viscosity (cP)
Benecel methylcellulose A15C PH	Hercules	MC	1500
Benecel methylcellulose A4M PH	Hercules	MC	4000
Benecel hypromellose E3PH	Hercules	HPMC 2910	3
Benecel hypromellose E5PH	Hercules	HPMC 2910	5
Benecel hypromellose E6PH	Hercules	HPMC 2910	6
Benecel hypromellose E15 PH	Hercules	HPMC 2910	15
Benecel hypromellose E50 PH	Hercules	HPMC 2910	50
Benecel hypromellose E4M PH	Hercules	HPMC 2910	3600
Benecel hypromellose E10M PH	Hercules	HPMC 2910	10,000
Benecel hypromellose K100LV PH	Hercules	HPMC 2208	100
Benecel hypromellose K4M PH	Hercules	HPMC 2208	3600
Benecel hypromellose K15M PH	Hercules	HPMC 2208	18,000
Benecel hypromellose K35M PH	Hercules	HPMC 2208	35,000
Benecel hypromellose K100M PH	Hercules	HPMC 2208	100,000
Benecel hypromellose K200M PH	Hercules	HPMC 2208	200,000

Information was gathered from the Hercules website.

barrier from rupturing during tablet compression. The tablets would then disintegrate upon introduction into aqueous media to reveal the original microcapsules. The microcapsules would disperse over a broad area within the GI tract, release KCl in modified fashion and reduce incidence of localized GI irritation from KCl.

^aA, A chemistry; E, E chemistry; F, F chemistry; K, K chemistry; C, previous number × 10²; M, previous number × 10³; P, premium; LV, low viscosity; CR, controlled release.

bMC=methylcellulose; HPMC=hypromellose.

^cMO = methoxyl substitution.

^dHPO = hydroxypropoxyl substitution.

eViscosity ranges reported for METHOCEL A chemistry grades are measured according to the USP 32 / NF 27 test method. The solvent is water. The unit of measure is cP.

Viscosity ranges reported for METHOCEL E, F and K chemistry grades are measured according to harmonized pharmacopeial test methods (Harmonized: European, Japanese and US Pharmacopeias). The unit of measure is mPa-s. When the viscosity of a 2% solution is less than 600 mPa-s, viscosity is measured at 20 °C using a Ubbelohde viscometer. When the viscosity of a 2% solution is greater than 600 mPa-s, viscosity is measured at 20 °C using a Brookfield viscometer.

TM: Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow.

^{+:} Dow Wolff Cellulosics.

 $^{^{\}alpha}$: A=A chemistry; E=E chemistry; K=K chemistry; C=previous number X $^{10^2}$; M=previous number X $^{10^3}$; LV=low viscosity.

^β: MC = methylcellulose; HPMC = hypromellose.

In yet another example, hypromellose was used as a binder rather than an encapsulating polymer⁹⁷. A mixture of amoxicillin and hypromellose was layered onto sucrose nonpareil cores. Hypromellose served to bind the API to the core surface. A taste-masking layer consisting of ethylcellulose and PEG was then applied to encapsulate the API. The microencapsulated API was then metered into unit-dose packets or further formulated into capsules or tablets. Hence, hypromellose served a critical role in formulating microcapsules but did not serve as the encapsulating polymer.

As previously described, Guyot and Fawaz⁴¹ used either hypromellose or hydroxypropylcellulose synergistically with ethylcellulose to formulate microcapsules for modified release. The synergistic combinations of polymers improved encapsulation efficiency and more effectively modified API release. In fact, microcapsules formulated with synergistic combinations exhibited slower, more regular API release than those encapsulated within ethylcellulose alone. This was a surprising finding given the fact that hypromellose and hydroxypropylcellulose are both hydrophilic polymers, which are often used as pore formers to facilitate API release across rate-modifying polymeric barriers.

Some references were identified where hypromellose was employed as the primary encapsulating polymer. For example, Ayer et al. 98 patented a formulation where sodium valproate was coated with polyethylene oxide (PEO) in a fluidized bed spray coater. The coated API was then microencapsulated within hypromellose in order to protect the underlying hygroscopic API from moisture. Microencapsulation within hypromellose also prepared the hygroscopic API for further downstream processing, such as tabletting and tablet coating.

Wan et al.99 spray dried an API in conjunction with hypromellose and various plasticizers in order to study the effect of plasticizer on the properties of the resulting microcapsules. Although Wan et al. used hypromellose as the encapsulating polymer, the focus of the paper was on microcapsule properties as a function of plasticizer. This reference will be discussed in greater detail in the section about plasticizers.

Like Wan et al., Hasçiçek et al.100 produced microspheres via spray drying using hypromellose as the encapsulating polymer. The microspheres were intended for intranasal delivery, and hypromellose was chosen as the encapsulating polymer due to its mucoadhesive properties. An encapsulating polymer with mucoadhesive properties was needed in order to enhance API retention within the nasal cavity. Enhanced retention was necessary to improve absorption of gentamicin sulfate, a polar API, across the lipophilic nasal epithelium. Upon contacting the moist mucosal layer lining the epithelium, hypromellose would hydrate and swell. The hydrated hypromellose gel layer would adhere the microspheres to the nasal mucosa and facilitate API dissolution and absorption across the epithelium.

Protective colloids

Protective colloids are often used during microencapsulation in order to induce polymer coacervation and to reduce the tendency of microcapsules to agglomerate during formation^{39,75,83,86,101-106}. Table 17 lists references identified where protective colloids were used during microencapsulation. Analyses of the usage frequency of protective colloids are shown in Figures 6 and 7. Figure 6 shows the total usage of each type of protective colloid. A total of 79 references were identified where protective colloids were used during microencapsulation. The two most commonly used protective colloids are polyethylene (PE) and PIB. Figure 7 shows usage frequencies of protective colloids with some of the most commonly employed microencapsulation techniques (discussed in Part 2).

From Figure 7, protective colloids apparently are most frequently employed with temperature-induced phase separation. Twenty-one references were identified where PE was used as the protective colloid. PIB was used in 15 of the references. Beyond these two protective colloids, butyl rubber (4 refs.), ethylene vinyl acetate (4 refs.), paraffin (2 refs.) and silicone (1 ref.) served as protective colloids during microencapsulation via temperatureinduced phase separation. To be concise, one reference for PE and one for PIB will be discussed.

Powell and Anderson¹⁰⁷ used PE as a coacervationinducing agent. In one of their examples, Powell and Anderson first prepared an encapsulating system consisting of cyclohexane (2000 g), PE (40 g), ethylcellulose std 100 (40 g) and acetylated monoglyceride (40 g). They used PE with a MW and ball-and-ring softening point of 7000 and 100-1° (determined by ASTM D-36-62), respectively. The core phase was then prepared by first dissolving saccharose (270 g) and gum Arabic (27 g) into hot water (81 g). Milled amobarbital (148 g, <150 µm) was dispersed into the aqueous solution after it was equilibrated to 70°C. The newly formed aqueous dispersion was added to the heated (70°C) encapsulating system described above to form dispersed droplets with diameters ranging from 200 to 1000 µm. Water from the internal phase was removed using anhydrous silicone dioxide gel (220 g, particle size < 420 µm). After 4 h, the microcapsules were isolated via filtration.

Koida et al. 103 studied the effect of varying MW of PIB on the properties of ethylcellulose microcapsules. Use of higher MW grades of PIB reduced the incidence of microcapsule aggregation. In fact, microcapsule aggregation was almost completely prevented using PIB with a MW greater than 6×10^5 . The MW of PIB also influenced the release rate of microencapsulated API. Release rate was minimized when PIB with a MW of 2×105 was employed. Koida et al. also investigated the effects of MW combinations of PIB on release rate. They found that release rate was further minimized when a MW combination of 9.5 × 10⁵ and 3 × 10⁴ was employed at a weight ratio of 1:4. Higher proportions of low MW PIB resulted in increased wall thickness and compactness but lower

Table 17. References identified where protective colloids were utilized to make microcapsules.

Protective colloid	References	
Butyl rubber	Alam and Eichel, 1982 ¹²⁶	Miller and Anderson, 1964 ⁶
	Alam and Eichel, 1980 ¹²⁹	Samejima et al., 1982 ¹⁰⁶
	Hirata and Niki, 1975 ³²⁶	
Ethylene vinyl acetate	Friend et al., 1997 ²⁰³	Lin and Yang, 1986 ¹⁸⁷
	Lin, 1985 ²¹⁰	Lin et al., 1988 ²⁹⁰
	Lin et al., 1985 ¹⁰⁴	Lin and Chen, 1992 ¹⁹⁰
Gelatin	Yang et al., 2001 ²²⁸	
Paraffin	Dobetti et al., 1999 ³²⁷	Samejima et al., 1985 ^{47,48}
	Motycka and Nairn, 197989	Wieland-Berghausen et al., 200219
Polybutadiene	Das, 1993 ³²⁸	
Polyethylene	Bettman et al., 1997 ¹²¹	Kondo and Ueda, 1973 ³²⁹
	Calanchi and Gentilini, 1985 ⁹⁴	NL 7215117 A; Anon., 1974 ¹⁶⁴
	Carpov et al., 1980 ¹⁴⁷	Morse, 1971 ⁵⁹
	Charle et al., 1973 ¹⁵³	Morse and Hammes, 1974 ¹⁹³
	Fan et al., 1996 ²⁰²	Morse and Hammes, 1974 ³³⁰
	Friend et al., 1997 ²⁰³	Motycka and Nairn, 1979 ⁸⁹
	Gantt et al., 2000 ³⁷	Nakajima et al., 1987 ³³¹
	Golzi et al., 2004 ⁹⁵	Powell, 1993 ¹⁹⁸
	He and Hou, 1989 ¹⁷⁸	Powell and Anderson, 1971 ¹⁰⁷
	Inoe, 1992 ²⁰⁴	Safwat and El-Shanawany, 1989 ⁷¹
	John, 1979 ²⁰⁵	Samejima et al., 1982^{106}
	Kato, 1981 ⁷⁹	Takashima et al., 1985 ³³²
	Kato and Nemoto, 1978 ²⁷⁷	JP 01005004 B4; Anon., 1981 ³³³
	Kato and Nemoto, 1978 ³³⁴	Venkatesh and Kramer, 2003 ³⁸
	Kato et al., 1979 ²⁷⁸	Wieland-Berghausen et al., 200219

The references are arranged in similar format to those in Table 1. Table 17 is continued in the appendix.

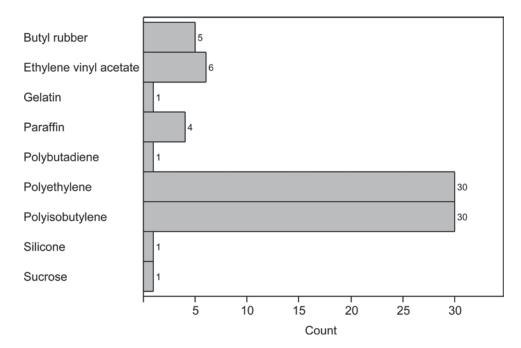


Figure 6. A list of protective colloids commonly used during microencapsulation along with the frequency by which each protective colloid was identified in the literature.

barrier uniformity. Koida et al. concluded that microcapsules exhibiting the greatest extents of modified release were produced when wall compactness, thickness and uniformity were balanced and optimized as functions of the PIB MW combination utilized.

Plasticizers

Five references were identified where the influence of plasticizer on microcapsule performance was investigated. In some of the studies, the influence of plasticizer was demonstrated via testing performance of

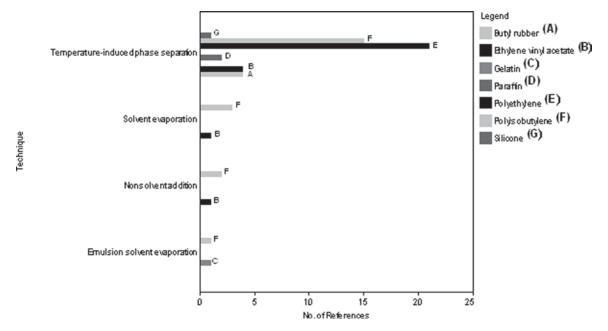


Figure 7. Referencing frequency of each protective colloid according to the microencapsulation technique used.

microcapsules formulated with or without plasticizer. In other studies, various plasticizers were evaluated in parallel to determine which plasticizer was most capable of achieving the desired endpoint, such as modified release. The presence of plasticizer often augmented modified release by increasing continuity of the microcapsule membrane and decreasing permeability.

Wan et al. ⁹⁹ studied the influence of propylene glycol, glycerin and citric acid on the properties and performance of hypromellose microcapsules produced via spray drying. Improved flow property measurements, in general, indicated that addition of plasticizer increased cohesiveness of the spray-dried particles. Leaching of plasticizer from the barrier often resulted in the formation of pores, which increased API release rate. For example, dissolution of entrained triethyl citrate produced a porous honeycomb-like microcapsule wall, which allowed rapid API release. Citric acid, on the other hand, produced the slowest observed API release rate. The type of plasticizer also influenced API crystallinity. For instance, amorphous API was produced when citric acid or glycerin was included as plasticizer.

In another study, Al-Omran et al. 108 investigated the effects of diethyl phthalate (DEP) and PEG 600 both at 20 and 40 weight percent of an encapsulating ethylcellulose barrier. Microcapsules produced with 20% PEG 600 dissolved very rapidly, but microcapsules containing 40% PEG 600 in the barrier dissolved much more slowly. The authors speculated that slower release of diclofenac sodium, used as model API, resulted from an increased viscosity of phosphate dissolution media due to the higher concentration of dissolved PEG 600. A different trend was observed when comparing the dissolution profiles of microcapsules containing 20% DEP (slower release) vs. 40% DEP (faster release). Al-Omran et al. stated that API release was faster with 40% DEP because

DEP exhibits enteric dissolution properties. Hence, DEP rapidly dissolved in the phosphate buffer, thus creating a highly porous ethylcellulose barrier through which dissolved API could be released. Ethylcellulose barriers containing 40% DEP became more porous than those containing 20% DEP, so faster API release was observed accordingly. In general, the palatability of microencapsulated diclofenac sodium was significantly improved over non-encapsulated diclofenac sodium. Furthermore, Al-Omran et al. found that microcapsules formulated with DEP were more palatable than microcapsules formulated with PEG 600.

Using dibutyl sebacate (DBS) as plasticizer, Lippold et al.109 studied barrier permeability and release of guaifenesin from ethylcellulose microcapsules as functions of plasticizer concentration, thermal post-treatment and storage time of ethylcellulose dispersion in the presence of plasticizer (before microencapsulation). Microcapsules were produced in a fluidized bed by spray coating guaiphenesin with aqueous ethylcellulose dispersion (Aquacoat; FMC BioPolymer, Philadelphia, PA) containing varying concentrations of DBS. Lippold et al. studied DBS concentrations of 11.5, 19.4 and 23.1% in the barrier membrane. They investigated dispersion storage times (in the presence of plasticizer) of 0, 9 and 57 days. They also studied 1-hr thermal post-treatments at 40, 50 and 68°C. Lippold et al. found that DBS concentration in the barrier was the most influential factor upon barrier permeability. Thermal post-treatment was found necessary to coalesce ethylcellulose particles when a DBS concentration of 11.5% was used. In contrast, low permeability values were obtained without thermal post-treatment when ethylcellulose barriers contained DBS levels of 19.4 and 23.1%. At these higher DBS concentrations, application of the ethylcellulose barrier occurred above the minimum film formation temperature, so thermal post-treatment was unnecessary. In fact, thermal post-treatment of barriers containing higher DBS concentrations actually increased barrier permeability. Lippold et al. speculated that thermal post-treatment at higher DBS concentrations allowed DBS to penetrate into ethylcellulose pseudolatex particles more completely. More complete DBS penetration caused the ethylcellulose chains to become more flexible and assume loosened, metastable conformations. These changes resulted in increased barrier permeability.

Motyka and Nairn⁸⁹ studied the effects of various plasticizers on barrier permeability from ethylcellulose std 20 and std 100 microcapsules containing ion-exchange resin in the benzoate form. Butyl stearate and castor oil were classified as lipophilic plasticizers, whereas PE and a PE-paraffin combination were classified as highly lipophilic plasticizers. Motyka and Nairn found that addition of any of these plasticizers, regardless of lipophilicity, prolonged release of benzoate to a greater extent compared to microcapsules formulated without plasticizer. For example, addition of castor oil produced ethylcellulose std 100 microcapsules exhibiting nearly a 50% decrease in diffusion coefficient of benzoate. Moreover, Motyka and Nairn found that highly lipophilic plasticizers produced ethylcellulose microcapsules exhibiting the greatest resistance to benzoate release. In fact, ethylcellulose std 100 microcapsules formulated with the PE-paraffin plasticizer combination produced the greatest extent of modified release.

Surfactants

Surfactants have been shown to affect microcapsule properties, such as particle size and barrier permeability. Because of their surface active properties, surfactants typically facilitate production of finer, more homogeneous mixtures between immiscible phases in emulsions or suspensions. Facilitated mixing of immiscible phases can ultimately result in reduced microcapsule size.

References have been identified where inclusion of surfactants during microencapsulation either increased or decreased API release. It is not surprising that surfactants could increase API release. Polar regions of its amphiphilic molecular structure often facilitate dissolution of the surfactant in water. Hence, aqueous media could gain easier access to the microcapsule core via dissolution of surfactant embedded throughout the microcapsule barrier. That is, dissolution of embedded surfactant could create a porous network through which dissolution media could more rapidly penetrate and subsequently dissolve API. Surprisingly, surfactants have also been shown to augment modified release performance. Examples of both cases will be briefly discussed.

Chowdary and Nageswara¹¹⁰ prepared ethylcellulose microcapsules containing sulfamethoxazole with or without Span 60 or Span 80 and studied the influence of surfactant on the resulting microcapsule properties.

Inclusion of these surfactants decreased microcapsule size, but did not affect API release.

Fekete et al.111,112 dissolved sodium dioctylsulfosuccinate, an anionic surfactant, and ethylcellulose in cyclohexane en route to producing microcapsules. The presence of sodium dioctylsulfosuccinate made possible the production of microcapsules exhibiting both suitable tabletting and rapid dissolution properties.

Singh and Robinson¹¹³ produced microcapsules containing captopril with different viscosity grades of ethylcellulose. Nonionic surfactants alone or in combination with other nonionic surfactants were dissolved in ethanol and added to the coacervation system to ensure complete dissolution of ethylcellulose. Surprisingly, microcapsules prepared using ethylcellulose std 45 along with 2% polysorbate 80 exhibited the greatest extent of prolonged release of all microcapsule formulations studied. These microcapsules released 70% API at 55 min compared to 70% in 7.75 min from ethylcellulose microcapsules produced without surfactant. The prolonged release effect resulting from addition of polysorbate 80 was surprising because the surfactant is soluble in water and would be expected to increase, rather than decrease, API dissolution.

Review summary

This three-part publication series represents a comprehensive review of 379 references identified where ethylcellulose, methylcellulose or hypromellose was used for microencapsulation. In Part 1, covered in the current paper, the roles of ethylcellulose, methylcellulose and hypromellose in microencapsulation are discussed. Most of the literature communicates the use of ethylcellulose as an encapsulating polymer. Part 1 also describes the use of other materials that have been formulated with the aforementioned encapsulating polymers. Such ingredients are protective colloids, plasticizers and surfactants.

The various techniques identified to make microcapsules are discussed in Part 2, which is covered in a separate paper. Part 3, covered in a third paper, discusses the various end-use applications for which microcapsules are used. In conclusion, the intent for this review is to give the reader a basic understanding of how and why ethylcellulose, methylcellulose and hypromellose are utilized in microencapsulation.

Acknowledgment

The authors gratefully acknowledge Roland Adden for providing helpful insight regarding cellulose ether chemistries.

Declaration of interest

The authors are employed by The Dow Chemical Company.

References

- 1. Shaw A. (1994). Report: Guideline for submitting supporting documentation in drug applications for the manufacture of drug substances. Food and Drug Administration: Center for Drug Evaluation and Research, Department of Health and Human
- 2. Green BK, Schleicher L. (1956). Manifold record material. US 2730456
- 3. Green BK, Schleicher L. (1957). Microscopic capsules containing oil. US 2800457.
- 4. Anonymous. (1962). Printing process. DE 1128872.
- 5. Berman E. (1965). Method of making transfer prints. US 3219446.
- 6. Miller RE, Anderson JL. (1964). Minute polymeric capsules for drugs, US 3155590.
- 7. CIPRO® prescribing information. (2007). http://www.univgraph. com/bayer/inserts/ciprotab.pdf.
- 8. Pöllinger N, Michaelis J, Benke K, Rupp R, Bücheler M. (1997). Flavor-masked pharmaceutical compositions. US 5695784.
- 9. Pöllinger N, Michaelis J, Benke K, Rupp R, Bücheler M. (2000). Flavor-masked pharmaceutical compositions. US 6136347.
- 10. RxList: The Internet Drug Index website. (2007). http://www.rxlist. com/cgi/generic/kclsr.htm.
- 11. Lippmann I, Popli SD, Miller LG, Bell LG. (1981). Controlled release potassium dosage form. US 4259315 A.
- 12. Hsiao C, Chou C-TK. (1989). Controlled release potassium chloride. US 4863743 A.
- 13. Chemtob C. (1984). Microencapsulation by coacervation. Labo-Pharma—Problemes et Techniques, 346:702-709.
- 14. Chemtob C. (1987). Microencapsulation with ethyl cellulose. The role and effects of so-called "coacervation protecting and inducing" agents. STP Pharma, 3:418-424.
- 15. Samejima M. (1985). Microencapsulated drugs. Kagaku to Kogyo (Osaka, Japan), 59:452-457.
- 16. Benita S. (2006). Microencapsulation: Methods and industrial applications. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group.
- 17. Ghosh SK. (2006). Functional coatings: By polymer microencapsulation. Weinheim, Berlin: Wiley-VCH.
- 18. Whateley TL. (1992). Microencapsulation of drugs. Chur, Switzerland: CRC Press, Harwood Academic Publishers.
- 19. Vandegaer JE. (1974). Microencapsulation. Berlin, Germany: Springer.
- 20. Lim F. (1984). Biomedical applications of microencapsulation. Boca Raton, FL, USA: CRC Press.
- 21. Dimari S, Funke W, Haralson MA, Hunkeler D, Joos-Miller B, Matsumoto A, Okay O, Otsu T, Powers AC, Prokop A, Wang TG, Whitesell RR. (1998). Microencapsulation/microgels/iniferters. Berlin, Germany: Springer-Verlag Telos.
- 22. Deasy PB. (1984). Microencapsulation and related drug processes. New York, NY, USA; Oxford, UK: Marcel Dekker, Inc.
- 23. Thies C. (2001). Microencapsulation of food ingredients. Leatherhead, Surrey, England: Leatherhead Food Research
- 24. Cohen S, Bernstein H. (1996). Microparticulate systems for the delivery of proteins and vaccines. New York, NY, USA: Marcel Dekker, Inc.
- 25. Cheu SJ, Chen RR, Chen PF, Lin WJ. (2001). In vitro modified release of acyclovir from ethyl cellulose microspheres. J Microencapsul, 18:559-565
- 26. Zhang X, Lin T, Li X, Mei D, Li D, Gao H. (2000). Studies on microcapsules of norfloxacin. Shenyang Yaoke Daxue Xuebao,
- 27. Zhang ZY, Ping QN, Xiao B. (2000). Microencapsulation and characterization of tramadol-resin complexes. J Control Release, 66:107-113.
- 28. Chan LW, Heng PW. (1998). Effects of poly(vinylpyrrolidone) and ethylcellulose on alginate microspheres prepared by emulsification. J Microencapsul, 15:409-420.

- 29. Arabi H, Hashemi SA, Fooladi M. (1996). Microencapsulation of allopurinol by solvent evaporation and controlled release investigation of drugs. J Microencapsul, 13:527-535.
- 30. Singh J, Robinson DH. (1990). Controlled release captopril microcapsules: Effect of ethyl cellulose viscosity grade on the in vitro dissolution from microcapsules and tableted microcapsules. I Microencapsul, 7:67-76.
- 31. Dragan D, Airinei A, Carpov A. (1985). Dissolution studies of microencapsulated 4-sulphonamidophenoxyacetic acid: Effect of preparative variables on dissolution. J Microencapsul, 2:223-234.
- 32. Goto S, Uchida T, Aoyama T. (1985). Preparation and biopharmaceutical evaluation of microcapsules of ampicillin. J Pharmacobio-Dvn, 8:270-277.
- 33. Lee HJ, Lee MH, Shim CK. (1984). Preparation and evaluation of ethyl cellulose microcapsules of indomethacin. Arch Pharm Res, 7:33-40.
- 34. Deasy PB, Brophy MR, Ecanow B, Joy MM. (1980). Effect of ethylcellulose grade and sealant treatments on the production and in vitro release of microencapsulated sodium salicylate. J Pharm Pharmacol, 32:15-20.
- 35. Assimopoulou AN, Papageorgiou VP. (2004). Preparation and release studies of alkannin-containing microcapsules. J Microencapsul, 21:161-173.
- 36. ETHOCEL™ website. (2007). www.ethocel.com.
- 37. Gantt M, Venkatesh GM, Vishnupad KS. (2000). Controlled release potassium chloride tablet formulations. WO 2001043725 A1.
- 38. Venkatesh G, Kramer C. (2003). Controlled release potassium chloride tablets. US 20050013860 A1.
- 39. Uddin MS, Hawlader MN, Zhu HJ. (2001). Microencapsulation of ascorbic acid: Effect of process variables on product characteristics. J Microencapsul, 18:199-209.
- 40. Koida Y, Hirata G, Samejima M. (1983). Studies on microcapsules. II. Influence of molecular weight of ethylcellulose in the microencapsulation of ascorbic acid. Chem Pharm Bull, 31:4476-4482
- 41. Guyot M, Fawaz F. (1998). Nifedipine loaded-polymeric microspheres: Preparation and physical characteristics. Int J Pharm, 175:61-74.
- 42. Chen H, Wu J-C, Chang C-L. (1994). Preparation and release behavior of cellulose triacetate-ethylcellulose microcapsules containing theophylline by using emulsion nonsolvent addition method. Huaxue, 52:301-310.
- 43. Wu JC, Jean WJ, Chen H. (1994). Evaluation of the properties of ethylcellulose-cellulose triacetate microcapsules containing theophylline prepared by different microencapsulation techniques. J Microencapsul, 11:507-518.
- 44. Uchida T, Yasutake T, Goto S. (1992). Utility of mixture of commercially available polymers as constituents of sustainedrelease microcapsules containing cefadroxil or theophylline. Chem Pharm Bull, 40:463-466.
- 45. Tsujiyama T, Suzuki N, Kuriki T, Kawata M, Goto S. (1990). Pharmacological evaluation of hydroxypropylcelluloseethylcellulose piretanide. microcapsules containing Pharmacobio-Dyn, 13:1-9.
- 46. Tsujiyama T, Suzuki N, Kawata M, Uchida T, Goto S. (1989). Preparation and pharmacokinetic and pharmacodynamic evaluation of hydroxy propyl cellulose-ethyl microcapsules containing piretanide. J Pharmacobio-Dyn, 12:311-323.
- 47. Samejima M, Hirata G, Ishibashi T. (1985). Process for preparing free-flowing ethyl cellulose microcapsules. US 4542042.
- 48. Samejima M, Hirata G, Koida Y, Kobayashi Y, Kida A. (1985). Enteric microcapsules. EP 77956 B1.
- 49. Sarin JPS, Khanna NM, Gupta SK, Khanna M, Singh S. (1985). Subdermal drug implants. GB 2103927 B2.
- 50. Beatty ML. (1982). Powdered microencapsulated bacampicillin acid addition salt and oral suspensions containing it. US 4321253 A.
- 51. Meier PM, Sparks RE, Lindan O. (1974). Report: Adsorption control and kinetic model for microencapsulated carbon. Case West.

- Reserve Univ., Cleveland, OH, USA: U.S. Nat. Tech. Inform. Serv., PB Rep. (1972).
- 52. Morris NJ, Warburton B. (1982). Three-ply walled w/o/w microcapsules formed by a multiple emulsion technique. J Pharm Pharmacol, 34:475-479.
- 53. Singla AK, Nagrath A. (1988). Stability of ascorbic acid-zinc sulfate tablets. Drug Dev Ind Pharm, 14:1471-1479.
- 54. Chalabala M. (1984). Microencapsulation of a water-soluble substance. Pharmazie, 39:643-644
- 55. Tsai YH, Huang LC. (1985). [Studies on the microencapsulation of indomethacin by a phase separation technique]. Gaoxiong Yi Xue Ke Xue Za Zhi, 1:551-561.
- 56. Vitkova M, Chalabala M, Rak J, Pikulikova Z. (1983). Study of drug microforms. IV. Preparation of microcapsules containing potassium chloride. Farm Obz, 52:531-538.
- 57. Baichwal MR, Abraham IA. (1980). Microencapsulation of metronidazole. Indian J Pharm Sci, 42:48-51.
- 58. Baichwal MR, Chidambharam PP. (1977). Ascorbic acid protection by embedding. Indian J Pharm Sci, 39:129-132.
- 59. Morse LD. (1971). Microencapsulation form of antiinflammatory indomethacin, US 3557279 A.
- 60. Barik BB, Sahoo SK, Chatterjee S, Dinda A. (2004). Effect of a protective colloid in microencapsulation using ethylcellulose and Eudragit RS 100. J Teach Res Chem, 11:53-57.
- 61. Becourt P, Boltri L, Cioloca N, Bruschi SDL, Mapelli LG, Rabaglia L, Schwabe D. (2002). Taste masked oral composition of telithromycin. WO 2004009059 A1.
- 62. Bruschi SDL, Mapelli LG, Rabaglia L, Boltri L. (2002). Process for the preparation of pharmaceutical microcapsules with enhanced taste-masking and high dissolution rate. WO 2004009058 A1.
- 63. Becourt P, Chauvin J, Schwabe D. (2002). Pharmaceutical formulation having a masked taste comprising at a cellulose polymer and a methacrylic polymer. WO 2003000225 A3.
- 64. Becourt P, Cioloca N, Boltri L, Bruschi SDL, Mapelli LG, Rabaglia L, Schwabe D. (2002). Taste masked oral composition of telithromycin. US 2004013737 A1.
- 65. Barzola G, Piacentini D, Wexler P. (2001). Microencapsulation of secnidazole by fluid-bed coating: Relation between taste masking and coating membrane thickness. Revista SAFYBI, 40:21-27.
- 66. Elbary AA, El Razaz MA, El-Khateeb MM, Mohamed AI. (2001). Formulation and evaluation of controlled release ibuprofen granules and coprecipitates. Bull Fac Pharm, 39:83-102.
- 67. Rhee GJ, Do KC, Kim EH, Park JB, Whang SJ. (1997). Development of multiparticulate-system composed of sustained-release microspheres of pseudoephedrine hydrochloride and immediaterelease pellets of terfenadine using solvent evaporation method and spherically agglomerated crystallization process. Yakhak Hoechi, 41:305-311.
- 68. Kostova I, Valova N, Parusheva K, Georgiev G. (1994). Precipitation of enteric copolymers from their acetone solutions and their applications for microencapsulation of ampicillin trihydrate. Godishnik na Sofiiskiya Universitet "Sv. Kliment Okhridski". Khimicheski Fakultet, 81:69-80.
- 69. Georgiev G, Valova N, Tarkalanov N, Parusheva K, Kostova I. (1994). Regulation of the microencapsulated ampicillin trihydrate released from calcium alginate gel matrix. Godishnik na Sofiiskiya "Sv. Kliment Okhridski". Khimicheski Fakultet, Universitet 81:107-116.
- 70. Bodmeier R, Chen H. (1990). Indomethacin polymeric nanosuspensions prepared by microfluidization. J Control Release, 12:223-233.
- 71. Safwat SM, El-Shanawany S. (1989). Evaluation of sustainedrelease suppositories containing microencapsulated theophylline and oxyphenbutazone. J Control Release, 9:65-73.
- 72. Ichikawa H, Fukumori Y. (2000). A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release, 63:107-119.

- 73. Sfar S, Karoui M. (1989). Microencapsulation of potassium chloride by spray drying, and study of the release before and after treatment of the microcapsules by fats. Conference proceedings: Congr. Int. Technol. Pharm., Association de Pharmacie Galénique Industrielle.
- 74. Snipes WC, Wagner SJ. (1989). Controlled release potassium chloride composition. US 4832955.
- 75. Shin SC, Koh IB. (1989). Effect of polyisobutylene and sealant treatments on ethyl cellulose-walled methyldopa microcapsules. Yakche Hakhoechi, 19:29-37.
- 76. Chikamatsu Y, Ando Y, Hasebe K, Hayashi K. (1984). Microencapsulation of tryptophan. JP 01040011 B4.
- 77. Khanna NM, Gupta SK, Sarin JS, Singh S, Kanna M. (1982). Sustained-release pharmaceutical pellets for subcutaneous implantation. DE 3228533 A1.
- 78. Masayoshi S and Goichi H. (1981). Preparation of microcapsules. JP 58049433 A2.
- 79. Kato T. (1981). Sustained-release pharmaceutical microcapsules. IP 58035110 A2
- 80. Samejima M, Hirata G, Koida Y. (1983). Process for preparing pharmaceutically active compound-containing microcapsules. US 4389331
- 81. Kassem AA, Badawy AA, El-Sayed AA, El-Mahrouk GM. (1978). Preparation of non-pareil seeds of thiamine hydrochloride. Pharm Ind. 40:396-399.
- 82. Sriwongjanya M, Bodmeier R. (1997). Entrapment of drug-loaded ion-exchange particles within polymeric microparticles. Int J Pharm, 158:29-38.
- 83. Moldenhauer MG, Nairn JG. (1994). Solubility parameter effects on microencapsulation in the presence of polyisobutylene. J Control Release, 31:151-162.
- 84. Moldenhauer MG, Nairn JG. (1992). The control of ethylcellulose microencapsulation using solubility parameters. J Control Release, 22:205-218.
- 85. Moldenhauer MG, Nairn JG. (1991). The effect of rate of evaporation on the coat structure of ethylcellulose microcapsules. J Control Release, 17:49-60
- 86. Moldenhauer MG, Nairn JG. (1990). Formulation parameters affecting the preparation and properties of microencapsulated ion-exchange resins containing theophylline. J Pharm Sci, 79:659-666
- 87. Motycka S, Newth CJ, Nairn JG. (1985). Preparation and evaluation of microencapsulated and coated ion-exchange resin beads containing theophylline. J Pharm Sci, 74:643-646.
- 88. Goto S, Moriya F, Kawata M, Kimura T. (1984). Preparation and biopharmaceutical evaluation of microcapsules of amoxicillin. J Microencapsul, 1:137-155
- 89. Motycka S, Nairn JG. (1979). Preparation and evaluation of microencapsulated ion-exchange resin beads. J Pharm Sci, 68:211-215.
- 90. Yokota Y, Ishibashi K, Yamada K, Tanaka S, Pondevida JL, Dominguez LG, Lalusis BM, Pigao CG, Panlasigui RA. (1994). Preparation and performance of slow release microcapsules containing nutrient by complex emulsion method. Philipp J Sci, 123:121-133.
- 91. Ishibashi K, Yamada K, Noda Y, Shigashide F. (1985). Preparation of medicinal carbon and microcapsules containing acetylsalicylic acid on medicinal carbon. Pharm Ind, 47:1185-1189.
- 92. Ishibashi K, Yamada K, Noda Y, Higashide F. (1984). Medicinal carbon from industrial active carbon. 4. Preparation of microcapsules containing aspirin adsorbed on medicinal carbon. Yakuzaigaku, 44:66-71.
- 93. Ishibashi K, Yamada K, Noda Y, Nozawa Y, Miyagishima A, Higashide F. (1984). Medicinal carbon from industrial active carbon. 3. Preparation and properties of microcapsules containing medicinal carbon. Yakuzaigaku, 44:57-65.
- 94. Calanchi M, Gentilini L. (1985). Sustained release formulation of water-soluble components. EP 0177000 A1.
- 95. Golzi R, Boltri L, Stollberg C. (2004). Microcapsules by coacervation containing a pharmaceutical incorporated in the coating polymer. WO 2004105725 A3.

- 96. Murthy TEGK, Chowdary KPR. (2004). Influence of polymer solvent on permeability and release of diclofenac from ethylcellulose films and microcapsules. Int J Pharm Excipients, 3:39-45.
- 97. Giannini RP, Bashour DA. (1989). Amoxicillin microencapsulated granules. WO 9001932 A1.
- 98. Ayer AD, Yieh RLC, Pollack BJ, Wong PSL. (1994). Valproate for sustained antiepileptic therapy. WO 9427587 A3.
- 99. Wan LS, Heng PW, Chia CG. (1992). Plasticizers and their effects on microencapsulation process by spray-drying in an aqueous system, I Microencapsul, 9:53-62.
- 100. Hasçiçek C, Gönül N, Erk N. (2003). Mucoadhesive microspheres containing gentamicin sulfate for nasal administration: Preparation and in vitro characterization. Farmaco, 58:11-16.
- 101. Donbrow M, Benita S. (1977). The effect of polyisobutylene on the coacervation of ethyl cellulose and the formation of microcapsules [proceedings]. J Pharm Pharmacol, 29 Suppl:4P.
- 102. Kawashima Y, Lin SY, Kasai A, Takenaka H, Matsunami K, Nochida Y, Hirose H. (1984). Drug release properties of the microcapsules of adriamycin hydrochloride with ethyl cellulose prepared by a phase separation technique. Drug Dev Ind Pharm, 10:467-479.
- 103. Koida Y, Kobayashi M, Hirata G, Samejima M. (1984). Studies on microcapsules. III. Influence of molecular weight of polyisobutylene in the microencapsulation of ascorbic acid. Chem Pharm Bull, 32:4971-4978.
- 104. Lin SY, Yang JC, Jiang SS. (1985). Studies on microencapsulation. (I). Micromeritic properties of theophylline microcapsules prepared by coacervation-phase separation method. Taiwan Yaoxue Zazhi, 37:1-10.
- 105. Nixon JR, Agyilirah GA. (1982). The effect of polyisobutylene on the properties of ethyl cellulose-walled microcapsules of phenobarbitone sodium. Acta Pharm Technol, 28:137-140.
- 106. Samejima M, Hirata G, Koida Y. (1982). Studies on microcapsules. I. Role and effect of coacervation-inducing agents in the microencapsulation of ascorbic acid by a phase separation method. Chem Pharm Bull, 30:2894-2899.
- 107. Powell TC, Anderson JL. (1971). Polymer-coated small particles. US 3576759
- 108. Al-Omran MF, Al-Suwayeh SA, El-Helw AM, Saleh SI. (2002). Taste masking of diclofenac sodium using microencapsulation. J Microencapsul, 19:45-52.
- 109. Lippold BH, Sutter BK, Lippold BC. (1989). Parameters controlling drug release from pellets coated with aqueous ethyl cellulose dispersion. Int J Pharm, 54:15-25.
- 110. Chowdary KPR, Nageswara Rao G. (1985). Studies on a new technique of microencapsulation: Part II. Indian Drugs, 23:58.
- 111. Fekete PI. (1992). The effect of surfactants on the properties of microcapsules. Drug Target Deliv, 1:55-63.
- 112. Fekete P, Bezzegh D, Zukovics K, Jámbor Z, Tombor J. (1989). Process for preparing microcapsules comprising ethyl cellulose. GB 2226804 B2.
- 113. Singh J, Robinson DH. (1988). Controlled release captopril microcapsules: Effect of non-ionic surfactants on release from ethyl cellulose microcapsules. J Microencapsul, 5:129-137.
- 114. Abu-Izza KA, Garcia-Contreras L, Lu DR. (1996). Preparation and evaluation of sustained release AZT-loaded microspheres: Optimization of the release characteristics using response surface methodology. J Pharm Sci, 85:144-149.
- 115. Chemtob C, Gruber T, Chaumeil JC. (1989). Influence of polyisobutylene on microencapsulation of metronidazole. Drug Dev Ind Pharm, 15:1161-1174.
- 116. Adikwu MU. (1995). Release behavior from latex-treated, matrix tablet formulations. Pharmakeutike, 8:83-88.
- 117. Ahlert G, Evert S. (1995). Medicated dental floss containing oxygen generating agent. US 5423337 A.
- 118. Bergisadi N, Gurvardar D. (1989). Studies on piroxicam microcapsules and in vitro release kinetics. Acta Pharm Turcica, 31:161-165.
- 119. Chen H, Wu JC, Chen HY. (1995). Preparation of ethylcellulose microcapsules containing theophylline by using emulsion nonsolvent addition method. J Microencapsul, 12:137-147.

- 120. Al-Omran MF, Al-Suwayeh SA, El-Helw AM, Saleh SI. (2002). Formulation and physicochemical evaluation of diclofenac sodium chewable tablets. Saudi Pharm J, 10:177-183.
- 121. Bettman MJ, Percel PJ, Powell TC. (1997). Effervescent microcapsules. US 5639475.
- 122. Al-Omran MF, Al-Suwayeh SA, El-Helw AM, Saleh SI. (2002). Taste masking of diclofenac sodium employing four different techniques. Saudi Pharm J, 10:106-113.
- 123. Bhalerao SS, Lalla JK, Rane MS. (2001). Study of processing parameters influencing the properties of diltiazem hydrochloride microspheres. J Microencapsul, 18:299-307.
- 124. Biju SS, Saisivam S, Rajan NS, Mishra PR. (2004). Dual coated erodible microcapsules for modified release of diclofenac sodium. Eur J Pharm Biopharm, 58:61-67.
- 125. Chow AHL, Ho SSS, Tong HHY, Ma HHM. (1998). Parameters affecting in-liquid drying microencapsulation and release rate of cefaclor. Int J Pharm, 172:113-125.
- 126. Alam AS, Eichel HJ. (1982). Sustained release pharmaceutical formulation, US 4316884 A
- 127. Bodmeier R, Chen H. (1989). Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J Control Release, 10:167-175
- 128. Chowdary KPR, Rao GN. (1984). Studies of a new technique of microencapsulation by ethyl cellulose. Indian J Pharm Sci, 46:213-215.
- 129. Alam AS, Eichel HJ. (1980). Indoprofen-a continuous release pharmaceutical. DE 3001797 A1.
- 130. Alpar OH. (1981). Sustained-release characteristics of tablets ethylcellulose microcapsules containing potassium phenethicillin. Farmaco Prat, 36:366-373.
- 131. Bodmeier R, Wang J. (1993). Microencapsulation of drugs with aqueous colloidal polymer dispersions. J Pharm Sci, 82:191-194.
- 132. Chowdary KPR, Rao GN. (1985). Studies on a new technique of microencapsulation. Part III: Effect of certain variables on size distribution of the microcapsules. Indian Drugs, 22:381-382.
- 133. Alpar HO, Walters V. (1981). The prolongation of the in vitro dissolution of a soluble drug (phenethicillin potassium) by microencapsulation with ethyl cellulose. J Pharm Pharmacol, 33:419-422.
- 134. Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP. (1995). Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm Res, 12:1211-1217.
- 135. Chowdary KPR, Rao GN. (1985). Studies on a new technique of microencapsulation. Part V: Microencapsulation of aspirin by ethyl cellulose. Indian Drugs, 22:479-481.
- 136. Aly AM, Saleh SI, Ahmed SM, Abdel-Rahaman SI, Aboutaleb AE. (1993). Microencapsulation of nitrofurantoin by coacervation using certain polymeric materials. Bull Pharm Sci, 16:73-87.
- 137. Chowdary KPR, Murty ASR. (1985). Controlled nitrofurantoin release through microencapsulation. Indian J Pharm Sci, 47:161-62.
- 138. Amperiadou A, Georgarakis M. (1995). Controlled release salbutamol sulfate microcapsules prepared by emulsion solvent-evaporation technique and study on the release affected parameters. Int J Pharm, 115:1-8.
- 139. Chowdary KPR, Rao GN. (1986). Studies on a new technique of microencapsulation. Part VI: Microencapsulation of indomethacin. Indian Drugs, 23:508-509.
- 140. Anderson JL. (1971). Report: Microencapsulated cloud seeding materials. Capsular Res. Prod. Dev. Dep., Natl. Cash Register Co., Dayton, OH, USA: U.S. Clearinghouse Fed. Sci. Tech. Inform.
- 141. Cameroni R, Coppi G, Forni F, Iannuccelli V, Bernabei MT. (1985). [Sulfadiazine: Release from microcapsules]. Boll Chim Farm, 124:393-400.
- 142. Chowdary KPR, Babu KVVS. (1988). A comparative evaluation of ethyl cellulose, gelatin and calcium alginate microcapsules prepared by complex emulsion methods. Indian J Pharm Sci, 50:173-175.

- 143. Anderson JL, Haines RC Jr, Powell TC. (1972). Minute capsules and their manufacture en masse. US 3694372 A.
- 144. Carpov A, Oita N, Tolea A, Pavelescu M. (1982). Antiinflammatory and antirheumatic composition containing acetylsalicylic acid and aminocaproic acid. RO 78211 B.
- 145. Chowdhary KPR, Ramesh KVRNS. (1993). Studies on microencapsulation of diltiazem. Indian J Pharm Sci, 55:52-54.
- 146. Andre-Abrant A, Taverdet J-L, Jay J. (2001). Microencapsulation by solvent evaporation. Eur Polym J, 37:955-963.
- 147. Carpov A, Oita N, Tolea A. (1980). Microencapsulation of calcium rutin and magnesium rutin. RO 74767 B.
- 148. Chowdary KPR, Ratna JV. (1993). A comparative evaluation of ethylcellulose, methylcellulose, and cellulose acetate microcapsules prepared by a complex emulsion method. Indian Drugs, 30:179-184.
- 149. Cedrati N, Bonneaux F, Labrude P, Maincent P. (1997). Structure and stability of human hemoglobin microparticles prepared with a double emulsion technique. Artif Cells Blood Substit Immobil Biotechnol, 25:457-462.
- 150. Chowdary KPR, Sastry VH. (1997). Microencapsulation of diclofenac. A comparison of drug release from various microcapsules. Eastern Pharmacist, 40:119-122.
- 151. Chukwu A, Agarwal SP, Adikwu MU. (1991). Some properties chloroquine phosphate and quinine hydrochloride microcapsules. STP Pharma Sci, 1:117-120.
- 152. Cohen EC. (1986). Microencapsulated astringent hemostatic agents and their use. US 4597960 A.
- 153. Charle R, Zviak C, Kalopissis G. (1973). Cosmetic composition containing nail polish solvents enclosed in microcapsules. FR 2033292 B3.
- 154. Cordes G. (1972). Microencapsulation of pharmaceuticals. DE 2223896 A1.
- 155. Barik BB, Gupta BK, Pal M. (1993). Preparation and evaluation of rifampicin microcapsules. Eastern Pharmacist, 36:173-175.
- 156. Chattaraj SC, Das SK. (1990). Effect of formulation variables on the preparation and in vitro-in vivo evaluation of cimetidine release from ethyl cellulose micropellets. Drug Dev Ind Pharm, 16:283-293.
- 157. Cowsar DR, Lewis DH, Whitehead GW. (1978). Report: Study of reactive materials for development of new protective clothing concepts. South. Res. Inst., Birmingham, AL, USA: Gov. Rep. Announce. Index (U.S.).
- 158. Cowsar DR. (1980). Fabric containing microcapsules of chemical decontaminants encapsulated within semipermeable polymers. US 4201822 A.
- 159. Cristallini C, Enriquez De Grassi G, Guardines L, Gaussmann R. (1984). A controlled-release anti-inflammatory drug. Studies on microcapsules. Appl Biochem Biotechnol, 10:267-272.
- 160. Chemtob C, Chaumeil JC, N'Dongo M. (1986). Microencapsulation by ethyl cellulose phase separation: Microcapsule characteristics. Int J Pharm, 29:1-7.
- 161. Curea E, Ban I, Leucuta ES, Bojita M, Cardan E. (1987). Effect of buffering and microencapsulation of acetylsalicylic acid on dissolution rate and bioavailability. Farmacia (Bucharest, Romania), 35:75-82.
- 162. Chemtob C, Chaumeil JC, N'Dongo M. (1986). Tablets of metronidazole microcapsules: Release characteristics. Int J Pharm, 29:83-92.
- 163. D'Onofrio GP, Oppenheim RC, Bateman NE. (1979). Encapsulated microcapsules. Int J Pharm, 2:91-99.
- 164. Anon. (1974). Stabilization of vitamins and minerals by microencapsulation. NL 7215117 A.
- 165. Morishita M, Ohno M, Sumita Y, Soejima R. (1985). Formulation design of rokitamycin (TMS-19-Q) tablet and its evaluation. Conference proceedings: Recent Adv. Chemother., Proc. Int. Congr. Chemother., 14th, University Tokyo Press.
- 166. Morre DM, Morre DJ, Cooper R, Chang MN. (2002). Tea catechins in sustained release formulations as cancer specific proliferation inhibitors. US 6410052 B1.

- 167. Murav'evIA, AndreevaIN. (1987). The effect of microencapsulation on release rate of euphylline from tablets. Farmatsiya (Moscow, Russian Federation), 36:19-21.
- 168. Nikolaev AS, Vinogradova LF, Kamenskaya MV. (1990). Biopharmaceutical examinations of dosage forms microencapsulated acetylsalicylic acid. Farmatsiya (Moscow, Russian Federation), 39:20-24.
- 169. Nikolayev AS, Gebre-Mariam T. (1993). Preparation and bioavailability studies of aspirin ethylcellulose microcapsules. Indian Drugs, 30:392-397.
- 170. Özyazici M, Sevgi F, Ertan G. (1996). Micromeritic studies on nicardipine hydrochloride microcapsules. Int J Pharm,
- 171. Raghubanshi RS, Jayaswal SB, Singh J. (1991). Controlledrelease tablets of ethyl cellulose coated salbutamol sulphate microcapsules. Pharmazie, 46:144-145.
- 172. Sajeev C, Vinay G, Archna R, Saha RN. (2002). Oral controlled release formulation of diclofenac sodium by microencapsulation with ethyl cellulose. J Microencapsul, 19:753-760.
- 173. Sevgi F, Ozyazici M, Güneri T. (1994). Sustained-release dosage form of phenylpropanolamine hydrochloride. Part II: Formulation and in vitro release kinetics from tableted microcapsules. J Microencapsul, 11:335-344.
- 174. Dahlström H, Eriksson S. (1971). The effect of microencapsulation with ethyl cellulose upon the disintegration in vivo and the dissolution of iron tablets. Acta Pharm Suec, 8:505-508.
- 175. Shopova S, Tomova V, Radeva K, Ateva P, Tyutyulkova N, Gorancheva Y. (1987). Controlled release of acetylsalicylic acid from Aspropharm tablets. Farmatsiya (Sofia, Bulgaria), 37:22-27.
- 176. Farid DJ, Blourchian N, Nokhodchi. (1994). Study of agents affecting the physical properties of a spirin-tableted microcapsules. J Sch Pharm Med Sci Univ Tehran, 4:27-39.
- 177. Tirkkonen S, Paronen P. (1993). Release of indomethacin from tabletted ethylcellulose microcapsules. Int J Pharm, 92:55-62.
- 178. He F, Hou H. (1989). Preparation of vitamin C microcapsule. Zhongguo Yiyao Gongye Zazhi, 20:462-464.
- 179. Tuncel T, Bergsadi N, Akin L, Otük G, Kusçu I. (1996). In vitro and in vivo studies on microcapsules and tabletted microcapsules of cephradine, Pharmazie, 51:168-171.
- 180. Hosny EA, Al-Helw AA-RM, Niazy EM. (1998). In-vitro and in-vivo evaluation of commercial and microencapsulated sustainedrelease tablets containing diclofenac sodium. Saudi Pharm J, 6:65-70
- 181. Vitkova M, Chalabala M, Rak J, Pikulikova Z. (1986). Studies of drug microforms. XIII187. Tablets with potassium chloride from ethyl cellulose microcapsules. Cesk Farm, 35:171-175.
- 182. Jalsenjak I, Nixon JR, Senjkovic R, Stivic I. (1980). Sustainedrelease dosage forms of microencapsulated isoniazid. J Pharm Pharmacol, 32:678-680.
- 183. Yazan Y, Demirel M, Güler E. (1995). Preparation and in vitro dissolution of salbutamol sulphate microcapsules and tabletted microcapsules. J Microencapsul, 12:601-607.
- 184. Kassem AA, Badawy AA, El-Sayed AA. (1975). Microencapsulation of L-ascorbic acid. Bull Fac Pharm, 12:11-24.
- 185. Zia H, Falamarzian M, Raisi A, Montaseri H, Needham TE. (1991). Biopharmaceutical evaluation of a tablet dosage form made from ethyl cellulose encapsulated aspirin particles. J Microencapsul, 8:21-28.
- 186. Kondo A, Miyano S, Kitajima M, Arai F. (1972). Encapsulated aspirin tablets. JP 49062623 A2.
- 187. Lin S-Y, Yang JC. (1986). Studies on microencapsulation. Part IV. Effect of ethylene-vinyl acetate as a coacervation-inducing agent on the production and release behavior of chlorpromazine hydrochloride microcapsules and tabletted microcapsules. J Control Release, 3:221-228.
- 188. Vitkova M, Chalabala M, Rak J, Prochazka R. (1994). Ethylcellulose to prepare a matrix system of a hydrophilic drug by the microencapsulation process. STP Pharma Sci, 4:486-491.

- 189. Kaltsatos V, Rollet M, Perez J. (1989). Optimization of a method of $microen capsulation \ by phase separation. \ Role of the \ hydroxypropyl$ methyl cellulose as a nucleating agent. STP Pharma, 5:96-102.
- 190. Lin SY, Chen FJ. (1992). Cooling rate affecting the formation and properties of theophylline ethylcellulose microcapsules prepared by phase separation method. Pharm Acta Helv, 67:91-96.
- 191. Whitaker DM Sr. (1991). Stabilized perfume-containing microcapsules and method of preparing the same. US 5051305 A.
- 192. Wieland-Berghausen S, Schote U, Frey M, Schmidt F. (2002). Comparison of microencapsulation techniques for the watersoluble drugs nitenpyram and clomipramine HCl. J Control Release, 85:35-43.
- 193. Morse LD, Hammes PA. (1974). Microencapsulated multivitamin compositions. GB 1371840 A.
- 194. Morse LD, Walker WG, Hammes PA. (1978). Microencapsulation. US 4123382 A.
- 195. Nasa SL, Yadav S. (1989). Microencapsulation of metoprolol tartrate using phase separation coacervation techniques. Eastern Pharmacist, 32:133-134.
- 196. Anon. (1967). Manufacture of small capsules by coating with cellulose ethers or other polymers. NL 6611661.
- 197. Nixon JR, Wong KT. (1990). Evaluation of drug permeation through polymeric membranes as a model for release. (II). Ethyl cellulose-walled microcapsules. Int J Pharm, 58:31-40.
- 198. Powell TC. (1993). Controlled-release calcium channel blocker microcapsules. US 5252337 A.
- 199. Doshi HA, Nafde P, Shrivastava R. (1994). A study of microencapsulation by coacervation phase separation of ethylcellulose. Indian J Pharm Sci, 56:195-197.
- 200. Rak J, Vitkova M, Chalabala M, Heliova M. (1984). Study on drug microforms. X. Manufacture and in vitro evaluation of ethyl cellulose microcapsules with sulfamethoxydiazine. Farm Obz, 53:445-454.
- 201. El-Helw AER. (1987). Effect of microcapsule size on release and bioavailability of phenazopyridine hydrochloride from ethyl cellulose walled microcapsules. Acta Pharm Technol, 33:145-148.
- 202. Fan G, Qu R, Zhou W, Yan Y, Zhao Q. (1996). Research on microencapsulation of water-soluble vitamins. Tianjin Daxue Xuebao, 29:592-597.
- 203. Friend DR, Ng S, Sarabia RE, Weber TP, Geoffroy J-M. (1997). Taste-masked microcapsule compositions and methods of manufacture. WO 9814179 A1.
- 204. Inoe N. (1992). Microencapsulated anti-AIDS virus agents. JP 06316524 A2.
- 205. John PM. (1979). Controlled-release composition. US 4153677 A.
- Kristmundsdottir T. (1992).206. Sveinsson SJ, microcapsules: Preparation and in vitro characterization. Int J Pharm, 82:129-133.
- 207. Szretter D, Zakrzewski Z. (1984). Microencapsulation of riboflavin by dispersion-congealing technique or by simple coacervation. Farm Pol. 40:275-279.
- 208. Koida Y, Kobayashi M, Samejima M. (1986). Studies on microcapsules. IV. Influence of properties of drugs on microencapsulation and dissolution behavior. Chem Pharm Bull, 34:3354-3361.
- 209. Kristl A, Bogataj M, Mrhar A, Kozjek F. (1991). Preparation and evaluation of ethyl cellulose microcapsules with bacampicillin. Drug Dev Ind Pharm, 17:1109-1130.
- 210. Lin SY. (1985). Influence of coacervation-inducing agents and cooling rates on the preparation and in vitro release of bleomycin hydrochloride microcapsules. J Microencapsul, 2:91-101.
- 211. Vitkova M, Chalabala M, Rak J, Heliova M. (1984). Drug microforms. VII. Microcapsules of chloramphenicol. Farm Obz, 53:241-250.
- 212. Morishita M, Inaba Y, Fukushima M, Hattori Y, Kobari S, Matsuda T. (1981). Microcapsule preparation. JP 56019324 B4.
- 213. Mortada SM. (1982). Preparation of ethyl cellulose microcapsules using the complex emulsion method. Pharmazie, 37:427-429.
- 214. Murthy TEGK, Chowdary KPR. (2005). Formulation and evaluation of ethylcellulose-coated diclofenac sodium microcapsules: Influence of solvents. Indian J Pharm Sci, 67:216-219.

- 215. Pérez-Martínez JI, Morillo E, Maqueda C, Ginés JM. (2001). Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Manag Sci, 57:688-694.
- 216. Ravichandran V, Sivanand V, Raghuraman S, Velrajan G, Mohan SBN, Subash S, Bennitojohnson D, Sankar V. (2001). Microencapsulation of nimesulide for sustained release. Eastern Pharmacist, 44:111-114.
- 217. Das SK. (1991). In vitro dissolution profile of theophylline loaded ethylcellulose microspheres prepared by emulsification solvent evaporation, Drug Dev Ind Pharm, 17:2521-2528.
- 218. Ruiz R, Sakr A, Sprockel OL. (1990). A study on the manufacture and in vitro dissolution of terbutaline sulfate microcapsules and their tablets. Drug Dev Ind Pharm, 16:1829-1842.
- 219. Elbahri Z, Taverdet JL. (2005). Optimization of an herbicide release from ethylcellulose microspheres. Polym Bull, 54:353-363.
- 220. Sheorey DS, Sai MS, Dorle AK. (1991). A new technique for the encapsulation of water insoluble drugs using ethyl cellulose. J Microencapsul, 8:359-368.
- 221. Uno K, Ohara Y, Arakawa M, Kondo T. (1984). A new method of preparing monocored water-loaded microcapsules using interfacial polymer deposition process. J Microencapsul, 1:3-8.
- 222. Huang HP, Ghebre-Sellassie I. (1989). Preparation of microspheres of water-soluble pharmaceuticals. J Microencapsul, 6:219-225.
- 223. Jones DS, Pearce KJ. (1995). An investigation of the effects of some process variables on the microencapsulation of propranolol hydrochloride by the solvent evaporation method. Int J Pharm,
- 224. Yang CY, Tsay SY, Tsiang RC. (2000). An enhanced process for encapsulating aspirin in ethyl cellulose microcapsules by solvent evaporation in an O/W emulsion. J Microencapsul,
- 225. Kentepozidou A, Kiparissides C. (1995). Production of watercontaining polymer microcapsules by the complex emulsion/ solvent evaporation technique. Effect of process variables on the microcapsule size distribution. J Microencapsul, 12:627-638.
- 226. Yang CY, Tsay SY, Tsiang RC. (2001). Encapsulating aspirin into a surfactant-free ethyl cellulose microsphere using nontoxic solvents by emulsion solvent-evaporation technique. J Microencapsul, 18:223-236.
- 227. Kiritani M. (1973). Particle encapsulation. JP 50094112 A2.
- 228. Yang C-Y, Tsay S-Y, Chen B-K. (2001). Application of gelatin for encapsulating aspirin into ethylcellulose microcapsule in an O/W emulsion. Chem Eng Commun, 186:241-255.
- 229. Lin WJ, Wu TL. (1999). Modification of the initial release of a highly water-soluble drug from ethyl cellulose microspheres. J Microencapsul, 16:639-646.
- 230. Yang F, Chu Y, Huo L, Yang Y, Liu Y. (2005). Fabrication of polyaniline/ethylcellulose composite microspheres microencapsulation. Chem Lett, 34:388-389.
- 231. Morishita M, Inaba Y, Fukushima M. (1973). Microencapsulation of hydrogenated macrolide antibiotics. JP 49100216 A2.
- 232. Zandi M, Pourjavadi A, Hashemi SA, Arabi H. (1998). Preparation of ethylcellulose microcapsules containing perphenazine and polymeric perphenazine based on acryloyl chloride for physical and chemical studies of drug release control. Polym Int, 47:413-418.
- 233. Morishita M, Inaba Y, Fukushima M, Hattori Y, Kobari S, Matsuda T. (1976). Encapsulation of medicaments, US 3960757 A.
- 234. Manekar NC, Puranik PK, Joshi SB. (1992). Microencapsulation of terbutaline sulphate by the solvent evaporation technique. J Microencapsul, 9:481-487.
- 235. Manekar NC, Puranik PK, Joshi SB. (1993). Microencapsulation of propranolol hydrochloride by the solvent evaporation technique. Eastern Pharmacist, 36:119-122.
- 236. Dubernet C, Rouland JC, Benoit JP. (1991). Ibuprofen-loaded ethylcellulose microspheres: Analysis of the matrix structure by thermal analysis. J Pharm Sci, 80:1029-1033.
- 237. Ghorab MM, Zia H, Luzzi LA. (1990). Preparation of controlled release anticancer agents. I: 5-Fluorouracil-ethyl cellulose microspheres. J Microencapsul, 7:447-454.

- 238. Ibrahim SA, Sayed HA, Hafez E, El-Sayed AM, Ali SS. (1990). Preparation and evaluation of sustained release ethyl cellulose encapsulated aspirin. Bull Pharm Sci, 13:235-46.
- 239. Khalil SAH, El-Gamal SS. (1973). Coating of pharmaceuticals by phase separation of cellulose derivatives. Preparation and in vitro release. Pharmazie, 28:385-388.
- 240. Uchida T, Fujimoto I, Goto S, Aoyama T. (1987). Preparation and evaluation of ethyl cellulose microcapsule containing cefadroxil or cephradine. Yakuzaigaku, 47:254-259.
- 241. Kosenko NV, Lebedenko VYa, Makharadze RV. (1986). Microencapsulation of ethmozin and microcapsule properties. Farmatsiya (Moscow, Russian Federation), 35:23-26.
- 242. Kristmundsdottir T, Ingvarsdottir K. (1994). Ibuprofen microcapsules: The effect of production variables on microcapsule properties. Drug Dev Ind Pharm, 20:769-778.
- 243. Ku YS, Kang HH. (1991). Microencapsulation of propranolol hydrochloride with ethylcellulose by solvent evaporation method in liquid paraffin. Nonchong - Han'guk Saenghwal Kwahak Yonguwon, 48:109-128.
- 244. Yoshida NH. (1972). Preparation of minuscule capsules. US 3657144.
- 245. Manekar NC, Puranik PK, Joshi SB. (1992). Microencapsulation of propranolol hydrochloride by the solvent evaporation technique. j Microencapsul, 9:63-66.
- 246. Zhu R, Xue F, Yang L, Zhao D. (1992). Microencapsulation of vitamin C by the solvent vaporation process. Gongneng Gaofenzi
- 247. Zulkarnain AK. (1996). The effect of cellulose derivatives on lynestrenol release rate from microencapsulated dosage form and in vitro-in vivo correlation. Majalah Farmasi Indonesia,
- 248. Fukumori Y, Ichikawa H, Yamaoka Y, Akaho E, Takeuchi Y, Fukuda T, Kanamori R, Osako Y. (1991). Microgranulation and encapsulation of pulverized pharmaceutical powders with ethyl cellulose by the Wurster process. Chem Pharm Bull, 39:1806-1812.
- 249. Fukumori Y, Ichikawa H, Yamaoka Y, Akaho E, Takeuchi Y, Fukuda T, Kanamori R, Osako Y. (1991). Effect of additives on physical properties of fine ethyl cellulose microcapsules prepared by the Wurster process. Chem Pharm Bull, 39:164-169.
- 250. Han M, Li K. (2001). Method for preparing microencapsulated multiple yeast enzyme composite for skin care. CN 1401314 A.
- 251. KimYJ, Yun CS, Seong KS. (1999). Preparation of microencapsulated ferrous sulfate, KR 211285 B1.
- 252. Knezevic Z, Gosak D, Hraste M, Jalsenjak I. (1998). Fluidbed microencapsulation of ascorbic acid. J Microencapsul,
- 253. Persson NO, Lindblom G, Bogentoft C, Appelgren C. (1981). NMR diffusion measurement in polymeric membranes used for controlled drug release. Acta Pharm Suec, 18:35-44.
- 254. Senjkovic R, Jalsenjak I. (1984). Influence of the atomization time on the properties of ethylcellulose microcapsules of isoniazid prepared by a fluidized bed. J Microencapsul, 1:241-247.
- $255.\ Nix on JR, Meleka MR. (1984). The preparation and characterization$ ethylcellulose-walled theophylline microcapsules. of Microencapsul, 1:53-64.
- 256. Nixon JR, Nimmannit U. (1985). Cellulose-walled microcapsules: 1. The effect of the solvent-non solvent proportions on the preparation of microcapsules from the system ethyl cellulosechloroform-ethane diol. J Microencapsul, 2:103-110.
- 257. El-Helw A-RM, Bayomi MA. (2000). Effect of core modification on the release of chlorpheniramine maleate from ethylcellulose and cellulose acetate propionate microcapsules. Saudi Pharm J,
- 258. Salib NN, El-menshaway ME, Ismail AA. (1976). Ethyl cellulose as a potential sustained release coating for oral pharmaceuticals. Pharmazie, 31:721-723.
- 259. Itoh M, Nakano M, Juni K, Sekikawa H. (1980). Sustained release of sulfamethizole, 5-fluorouracil, and doxorubicin from ethylcellulose-polylactic acid microcapsules. Chem Pharm Bull, 28:1051-1055.

- 260. Wu JC, Jean WJ, Chen H. (1993). Preparation and release behavior $of ethyl cellulose \, microcap sules \, containing \, the ophylline \, dispersed$ in cellulose triacetate matrixes. J Chin Chem Soc, 40:23-28.
- 261. Yazici E, Oner L, Kas HS, Hincal AA. (1996). Phenytoin sodium microcapsules: Bench scale formulation, process characterization and release kinetics. Pharm Dev Technol, 1:175-183.
- 262. Forni F, Coppi G, Vandelli MA, Cameroni R. (1991). Drug release from spray-dried and spray-embedded microparticles of diltiazem hydrochloride. Chem Pharm Bull, 39:2091-2095
- 263. Du J, Ding X, Lin X, Zheng C, Zhang W, Peng Y. (2001). Microencapsulated powders containing vitamins and polymers for sustained-release. CN 1380056 A.
- 264. Lin Y, Zhu D, Ding F, Zan J, Jiang G. (2004). Reverse temperature sensitive in-situ formation type implanting agent for injection. CN 1631357 A.
- 265. Anon. (1981). Double-layered microcapsules. JP 58035111 A2.
- 266. Kitakoji T, Yoneda Y, Murakawa K. (1973). Double-wall microencapsulation for pressure-sensitive copying paper. JP 49121786 A2
- 267. Liao C-W, Lin P, Weng C-N. (2003). An oral controlled-release formulation comprising ethylcellulose enteric encapsulant. US 2004208928 A1.
- 268. Mao L, Zhang R-H. (1994). Physicochemical properties and their influencing factors of microencapsulation of sulfadiazine with spray dry process. Zhongguo Yiyao Gongye Zazhi, 25:114-117.
- 269. Vo XM, Nguyen TL, Nguyen TMN. (2000). Pilot assay of the metronidazole microcapsules by separating the lyophilization phase from heating spray. Tap Chi Duoc Hoc, 11:15-17.
- 270. Yamada N, Nakamura H, Abe E. (1996). Preparation by spray drying of microcapsules with a core of a water soluble substance and a shell of ethylcellulose. Funtai Kogaku Kaishi, 33:632-637.
- 271. Rak J, Vitkova M, Chalabala M, Szechenyi S, Heinrich J. (1984). Study on drug microforms. XI. Biopharmaceutical evaluation of ethyl cellulose microcapsules with sulfamethoxydiazine. Farm Obz. 53:515-521.
- 272. Hu Z, Kimura G, Ito Y, Mawatari S, Shimokawa T, Yoshikawa H et al. (1999). Technology to obtain sustained release characteristics of drugs after delivered to the colon. J Drug Target, 6:439-448.
- 273. Rani KNS, Goundalkar AG, Prakasam K. (1994). Preparation and evaluation of microspheres of diclofenac sodium. Indian J Pharm Sci. 56:45-50
- 274. Karakasa I, Yagi N, Shibata M, Kenmotsu H, Sekikawa H, Takada M. (1994). Sustained release of phenytoin following the oral administration of phenytoin sodium/ethylcellulose microcapsules in human subjects and rabbits. Biol Pharm Bull, 17:432-436.
- 275. Kato T. (1981). Enhancement of antitumor effects by magnetic control of microencapsulated anticancer drug. Gan To Kagaku Ryoho, 8:698-706.
- 276. Shindo M. (1988). Microencapsulated anticancer drug. Experimental studies on microencapsulation of peplomycin and application to arterial microchemoembolization. Akita Igaku, 15:531-541.
- 277. Kato T, Nemoto R. (1978). Microencapsulation of mitomycin C for intraarterial infusion chemotherapy. Proc Jpn Acad Ser B Phys Biol Sci, 54:413-417.
- 278. Kato T, Nemoto R, Mori H, Unno K, Goto A, Harada M, Homma M. (1979). Preparation and characterization of ferromagnetic mitomycin C microcapsules as a means of the magnetic control of anticancer drugs. Proc Jpn Acad Ser B Phys Biol Sci, 55:470-475.
- 279. Tanaka N. (1978). Photodecomposable microcapsules. JP 54109078 A2
- 280. Kimura G, Hu Z, Mawatari S, Shimokawa T, Takada K. (1999). Technology to obtain sustained-release characteristics of drugs after delivery to the colon. Drug Deliv Syst, 14:191-196.
- 281. Dailey OD Jr, Dowler CC. (1995). Polymeric microcapsules of selected herbicides: Preparation and efficacy. Trends Org Chem, 5:83-102
- 282. Kozlova IV, Dontsova GI, Chlenov VA, Lebedenko VIa, Griadunova GP. (1977). [Microencapsulation process for water-soluble vitamins]. Farmatsiia, 26:37-39.

- 283. Uchida T, Goto S. (1988). Biopharmaceutical evaluation of sustained-release ethylcellulose microcapsules containing cefadroxil and cephradine using beagle dogs. Chem Pharm Bull, 36:2135-2144.
- 284. Deshpande AV, Njikam AP. (1977). Microencapsulation of paracetamol. Indian J Pharm Sci, 39:76-78.
- 285. Lavasanifar A, Ghalandari R, Ataei Z, Zolfaghari ME, Mortazavi SA. (1997). Microencapsulation of theophylline using ethylcellulose: In vitro drug release and kinetic modelling. J Microencapsul, 14:91-100.
- 286. Uchida T, Fujimoto I, Goto S. (1989). Biopharmaceutical evaluation of sustained-release ethylcellulose microcapsules containing amoxicillin using beagle dogs. Chem Pharm Bull, 37:3416-3419.
- 287. Ducroux P, Aiache S, Renoux R, Aiache JM. (1984). Study on the bioavailability of acetylsalicylic acid gelatin capsules. Conference proceedings: Biopharm, Pharmacokinet,, Eur. Congr., 2nd, Lavoisier.
- 288. Utsuki T, Brem H, Pitha J, Loftsson T, Kristmundsdottir T, Tyler BM, Olivi A. (1996). Potentiation of anticancer effects of microencapsulated carboplatin by hydroxypropyl- α -cyclodextrin. J Control Release, 40:251-260.
- 289. Echigo M, Murota H, Goto A, Unno K, Kato T, Nemoto R, Mori H, Homma M. (1982). Microencapsulation of neoplasm inhibitors. 2. Preparation and characteristic of the ferromagnetic microcapsules. Byoin Yakugaku, 8:242-245.
- 290. Lin SY, Ho LT, Chiou HL. (1988). Insulin controlled-release microcapsules to prolong the hypoglycemic effect in diabetic rats. Biomater Artif Cells Artif Organs, 16:815-828.
- 291. Fernandez-Urrusuno R, Gines JM, Morillo E. (2000). Development of controlled release formulations of alachlor in ethylcellulose. J Microencapsul, 17:331-342.
- 292. Maysinger D, Jalsenjak I. (1983). In situ absorption and in vitro release of microencapsulated cimetidine. Int J Pharm, 17:129-134.
- 293. Yalabik-Kas HS. (1983). Microencapsulation of 1,4-benzodiazepin-2-one derivatives. Oxazepam. DOGA Bilim Dergisi, Seri C: Tip, 7:75-84.
- 294. Gold O. (2001). Prolonged-release microgranules for 4-nitro-2phenoxymethanesulfonanilide. EP 1269998 A1.
- 295. Goto S. (1994). Pharmacokinetic considerations related to the bioavailability of sustained-release microencapsulated drugs for oral use. Conference proceedings: 9th International Symposium on Microencapsulation, Ed. de Sante, Paris.
- 296. Okamoto Y, Konno A, Togawa K, Kato T, Tamakawa Y, Amano Y. (1986). Arterial chemoembolization with cisplatin microcapsules. Br J Cancer, 53:369-375.
- 297. Goto S, Tsuruta M, Sato H, Nakayama T. (1973). Evaluation of microcapsules. I. Yakuzaigaku, 33:95-100.
- 298. Guo J, Xu H. (1998). Preparation and pharmacokinetics of sustained-release isoniazid. Zhongguo Yaoxue Zazhi, 33:95-98.
- 299. Portnyagina VA, Fedorova IP, Pochinok TV, Tarahovskii ML, Zadorozhnaya TD, Yatsenko KV. (1991). Microcapsules of sodium 2,3-dimercaptopropane sulfonate (unithiol). Farmatsiya (Moscow, Russian Federation), 40:24-27.
- 300. Putcha L, McDonough J, Boland EJ, Dixon H, Persyn JT, Vasisht N. (2005). Controlled release compositions and methods for using same. WO 2003105811 A8.
- 301. Murgu L, Oita M, Dogaru I. (1981). New pharmaceutical forms of aspirin. Experimental pharmacodynamic study. Farmacia (Bucharest, Romania), 29:229-238.
- 302. Nemoto R, Kato T. (1981). Experimental intra-arterial infusion of Microencapsulated Mitomycin C into pelvic organs. Br J Urol, 53:225-227.
- 303. Nemoto R, Kato T. (1984). Microencapsulation of anticancer drug for intraarterial infusion, and its clinical application. Conference proceedings: Microspheres Drug Ther.: Pharm., Immunol., Med. Aspects, Elsevier.
- 304. Palomo ME, Ballesteros MP, Frutos P. (1996). Solvent and plasticizer influences on ethylcellulose-microcapsules. J Microencapsul, 13:307-318.

- 305. Dailey OD Jr, Dowler CC. (1996). Herbicidal evaluation of polymeric microcapsules of cyanazine. Part II. Conference proceedings: 212th ACS National Meeting, American Chemical
- 306. Eley JG, Whateley TL, Goldberg JA, Kerr DJ, McArdle CS, Anderson J, Kato T. (1992). Microencapsulation of mitomycin C using ethylcellulose and its evaluation in patients with liver metastases. Drug Target Deliv, 1:293-303.
- 307. Takada K. (2000). Nonoral micro- or milli-capsules having threelayer structure, and manufacture thereof. WO 2001089486 A1.
- 308. Jouffroy C. (1984). Rodenticide formulation containing scilliroside. FR 2496403 B1.
- 309. Wang Y, Bai G, Sun W, Zhang H. (1993). Extraction of chromium (VI) by trioctylamine microcapsule. Yingyong Huaxue, 10:53-55.
- 310. Kato T, Unno K, Goto A. (1985). Ethylcellulose microcapsules for selective drug delivery. Meth Enzymol, 112:139-150.
- 311. Wang Y, Bai G, Xie P, Zhang H. (1993). Method on microencapsulation of α -1,4-glucan-4-glucanohydrolase. Mo Kexue Yu Iishu, 13:40-45.
- 312. Wang YJ, Liu CB, Bai GY, Chu Y, Wu ZS, Chang HZ. (1995). Immobilization of catalase with ethylcellulose microcapsule. Shengwu Huaxue Zazhi, 11:201-204.
- 313. Wang YJ, Liu CB, Bai GY, Chu Y, Wang FP, Ma ZF, Zhang HZ. (1996). Microcapsule-immobilized catalase. Gaodeng Xuexiao Huaxue Xuebao, 17:953-956.
- 314. Matsumoto K, Ugajin Y. (1989). Microencapsulation of pharmaceuticals with magnetic substances, and preparation of enzyme-bound magnetic microcapsules. JP 02229545 A2.
- 315. Zhang X, Zou L, Qi H, Liu D. (1993). Studies of the preparation of sodium ampicillin-ethylcellulose microcapsules and the bioavailability in rabbits. Shandong Yike Daxue Xuebao, 31:71-73
- 316. Morse LD, Hammes PA. (1972). Comestible fat product containing nutrition-enriching iron encapsulated to prevent rancidness. FR 2107697.
- 317. Sakuma S, Atsumi K. (1990). Anticariogenic dentifrices containing microencapsulated hydroxylapatite and microencapsulated fluoride. DE 3821256 A1.
- 318. Harte KM. (1978). Folic acid animal feed materials. US 4087556 A.
- 319. Heintz T, Teipel U. (2000). Coating of particulate energetic materials. Conference proceedings: International Annual Conference of Fraunhofer-Institut fur Chemische Technologie, Fraunhofer-Institut fur Chemische Technologie.
- 320. Szretter D, Zakrzewski Z. (1987). Technology of ascorbic acid microencapsulation. Acta Pol Pharm, 44:352-356.
- 321. Kallstrand AGV, Mattsson KJ, Sjoqvist RI. (1986). Controlled release oral mixtures containing microencapsulated pharmaceuticals. GB 2122490 B2.
- 322. Kantor ML, Steiner SS, Pack HM. (1989). Microencapsulation of fish oil. EP 336662 A3.
- 323. Yokoyama T, Shibata K. (1987). Microencapsulated alkaline earth sulfide phosphors. JP 63178194 A2.
- 324. Katsumi M. (1983). Method for fabrication of microencapsulated toners. JP 60120367 A2.
- 325. Pöllinger N, Michaelis J, Benke K, Rupp R, Bücheler M. (1999). Microencapsulated taste-masked pharmaceutical compositions. EP 551820 B1.
- 326. Hirata G, Niki Y. (1975). Microencapsulation of water-soluble medicines. JP 50030136 B4.
- 327. Dobetti L, Cogliati M, Calanchi M. (1999). Microencapsulation by coacervation. The influence of paraffin (coacervation-inducing agent) on drug release. Boll Chim Farm, 138:55-56.
- 328. Das SK. (1993). Effect of polybutadiene on the encapsulation efficiency of ethyl cellulose microcapsules of sulphadiazine. J Microencapsul, 10:437-447.
- 329. Kondo A, Ueda T. (1973). Microencapsulation. JP 49125516 A2.
- 330. Morse LD, Hammes PA. (1974). Microencapsulated product. ZA 7207752 A.

- 331. Nakajima T, Takashima Y, Iida K, Mitsuta H, Koishi M. (1987). Preparation and in vitro evaluation of sustained-release suppositories containing microencapsulated indomethacin. Chem Pharm Bull, 35:1201-1206.
- 332. Takashima Y, Nakajima T, Aikawa K, Iida K, Koishi M. (1985). Microencapsulation of drugs with ethyl cellulose for controlledrelease, IP 62132820 A2.
- 333. Anon. (1981). Rapid-release microcapsules containing ethyl cellulose and carbonates. JP 01005004 B4.
- 334. Kato T, Nemoto R. (1978). Preparation and properties of microencapsulated mitomycin C. IRCS Med Sci, 6:311.
- 335. Hecquet B, Fournier C, Depadt G, Cappelaere P. (1984). Preparation and release kinetics of microencapsulated cisplatin with ethylcellulose. J Pharm Pharmacol, 36:803-807.
- 336. Farivar M, Kas HS, Oner L, Hincal AA. (1993). Factorial design-based optimization of the formulation of isosorbide-5mononitrate microcapsules. J Microencapsul, 10:309-317.
- 337. Heintz T, Krober H, Teipel U. (2001). Microencapsulation of reactive materials. Schuettgut, 7:27-32.
- 338. Hitchcock CJ. (1980). Delayed release of sodium fluoride. US 4220552 A.
- 339. Dévay A, Rácz I. (1984). [Production of microcapsules containing tofizopam]. Acta Pharm Hung, 54:84-89.
- 340. Dévay A, Rácz I. (1987). [Preparation of acetylsalicylic acid microcapsules. II. Study of operational parameters]. Acta Pharm Hung, 57:261-265.
- 341. Gentilini L. (1986). Deodorant containing tannic acid microcapsules with modulating effect on perspiration. EP 201134
- 342. Dubernet C, Benoit JP, Peppas NA, Puisieux F. (1990). Ibuprofenloaded ethylcellulose microspheres: Release studies and analysis of the matrix structure through the Higuchi model. J Microencapsul, 7:555-565.
- 343. Dyug EM, Gladkikh SP, Prokopishin VI, Lebedenko VYa, Demina NB. (1982). Study of the microencapsulation process for novocainamide. Farmatsevtichnii Zhurnal (Kiev), 2:62-65.
- 344. Jani GK, Chauhan GM, Gohel M, Patel J. (1992). Microencapsulation of indomethacin by complex emulsification. Indian Drugs, 29:450-452
- 345. Goto S, Nakashima J, Tsuruta M, Sato H, Nakayama T. (1976). Evaluation of microcapsules. Part III. Determination of dissolution rate, coating thickness and external form of microencapsulated aspirins, and effect of microencapsulation with ethylcellulose on excretion pattern of salicylates. Yakuzaigaku, 36:1-6.
- 346. el-Helw AM, Nixon JR. (1987). Specific surface area measurement of ethyl cellulose-walled microcapsules containing theophylline. J Microencapsul, 4:111-119.
- 347. El-Helw A, El-Said Y, Ramadan E. (1988). Effect of core modification on the release and bioavailability of phenazopyridine hydrochloride from ethyl cellulose-walled microcapsules. Acta Pharm Fennica, 97:29-35.
- 348. Kaeser-Liard B, Kissel T, Sucker H. (1984). Manufacture of controlled release formulations by a new microencapsulation process, the emulsion-induction techniques. Acta Pharm Technol, 30:294-301.
- 349. Hasan M, Najib N, Suleiman M, El-Sayed Y, Abdel-Hamid M. (1992). In vitro and in vivo evaluation of sustained-release and enteric-coated microcapsules of diclofenac sodium. Drug Dev Ind Pharm, 18:1981-1988.
- 350. Kimura T. (1971). Dampening process for offset printing. DE 2113452 A.
- 351. Mallick S, Gupta BK, Ghosal SK. (1999). Formulation and evaluation of microencapsulation of verapamil hydrochloride coated with ethylcellulose, Eudragit RS and Eudragit RL. Acta Pol Pharm, 56:289-295
- 352. Kitajima M, Miyano S, Kondo A. (1969). Enzyme-containing microcapsules. Kogyo Kagaku Zasshi, 72:493-499.
- 353. Mallick S, Roy K, Chakraborty A, Saha S. (2002). Mechanism of in vitro release kinetics of flurbiprofen loaded ethylcellulose micropellets. Acta Pol Pharm, 59:193-198.

- 354. Murai K, Akazome G, Tani S, Oka Y. (1971). Microcapsular acid anhydrides. JP 48032816 A2.
- 355. Nelson LD. (1974). Weather modification using microencapsulated material. US 399009.
- 356. Nimmannit U, Suwanpatra N. (1996). Microencapsulation of drugs by the coacervation technique using ethylcellulose and acrylatemethacrylate copolymer as wall materials. J Microencapsul,
- 357. Sakr FM. (1991). Studies on microencapsulated granules: Effect of drug-binder solubilities and added diluents on core properties and microencapsulation characteristics. J Drug Res,
- 358. Suryakusuma H, Jun HW. (1984). Encapsulated hydrophilic polymer beads containing indomethacin as controlled release drug delivery systems. J Pharm Pharmacol, 36:497-501.
- 359. Salib NN. (1973). Microencapsulation and flocculation techniques in pharmaceutical formulation. III. Quantitative determination of the effect of coating/core ratio on drug release from phenobarbitone microcapsules and floccules. Pharm Ind, 35:217-219.
- 360. Survakusuma H, Jun HW. (1984). Formation of encapsulated hydrophilic polymer beads by combined techniques of bead polymerization and phase separation. J Pharm Pharmacol, 36:493-496.
- 361. Oh DM, Lee MH. (1982). Characteristics of ethyl cellulose microcapsules of sulfisoxazole. Arch Pharm Res, 5:61-70.
- 362. Salib NN, El-Gholmy ZA, Hagar HHS. (1989). Controlled release indomethacin microcapsules. Part II: Utilizing the hydrophobic polymer ethyl cellulose. Alex J Pharm Sci, 3:183-186.
- 363. Öner L, Yalabik-Kas HS, Hincal AA. (1983). Microencapsulation and in vitro dissolution kinetics of dihydralazine sulfate. Conference proceedings: Expo.-Congr. Int. Technol. Pharm., 3rd, Assoc. Pharm. Galenique Ind.
- 364. Szretter D, Zakrzewski Z. (1984). Preparation of thiamin nitrate microcapsules. Acta Pol Pharm, 41:241-247.
- 365. Öner L, Yalabik-Kas S, Cave G, Hincal AA. (1984). Microencapsulation and in vitro dissolution kinetics of dihydralazine sulfate. Labo-Pharma—Problemes et Techniques, 346:690-693.
- 366. Szretter D, Zakrzewski Z. (1987). Microencapsulation of nicotinamide by solidification or coacervation of the coating materials. Acta Pol Pharm, 44:555-559.
- 367. Oner L, Kas HS, Hincal AA. (1988). Studies on zinc sulphate microcapsules (1): Microencapsulation and in vitro dissolution kinetics, I Microencapsul, 5:219-223.
- 368. Pandell NW, Temin SC. (1972). Application of reactants and/or catalysts to textile fabrics in microencapsulated form. US 3632296 A.
- 369. Anon. (1981). Preparation of microcapsules. JP 58049433 A2.
- 370. Anon. (1982). Production of microcapsules which do not aggregate. JP 63007091 B4.
- 371. Sevgi F, Ozyazici M, Güneri T. (1994). Sustained-release dosage form of phenylpropanolamine hydrochloride. Part I: Microencapsulation and in vitro release kinetics. J Microencapsul, 11:327-334.
- 372. Tateno A, Shiba M, Kondo T. (1978). Electrophoretic behavior of ethyl cellulose and polystyrene microcapsules containing aqueous solutions of polyelectrolytes. Conference proceedings: Emulsions, Latices, Dispersions, Dekker.
- 373. Shear J, Kershman A. (2000). Method for preparing solid delivery system for encapsulated and non-encapsulated pharmaceuticals using lipids and surfactants. WO 2001049272 A3.
- 374. Shekerdzhiiski R, Pham TC, Titeva S. (1988). Microencapsulation of ferrous fumarate. Farmatsiya (Sofia, Bulgaria), 38:16-25.
- 375. Titeva S, Mantelos G, Shekerdzhiiski R, Minkov E, Mitikov Kr. (1986). Effect of coating agents on microencapsulation of ascorbic acid. Farmatsiya (Sofia, Bulgaria), 36:35-43.
- 376. Shekhare C, Gupta BK. (1989). Preparation and in-vitro evaluation of ethyl cellulose micropellets. Eastern Pharmacist, 32:135-138
- 377. Tomova V, Shopova S, Velikova E, Stanoeva L. (1988). Microencapsulation of active substances. I. Characterization

- of polymer films for coating. Farmatsiya (Sofia, Bulgaria), 38:37-42.
- 378. Anon. (1980). Production of aspirin microcapsules. JP 56049315 A2.
- 379. Rao KR, Senapati P, Das MK. (2005). Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J Microencapsul, 22:863-876.
- 380. Shopova S, Tomova V. (1982). Study of the microencapsulation of ascorbic acid. Farmatsiya (Sofia, Bulgaria), 32:32-37.
- 381. Yalabik-Kas HS. (1983). Microencapsulation and in vitro dissolution of oxazepam from ethyl cellulose microcapsules. Drug Dev Ind Pharm, 9:1047-1060.
- 382. Unno K, Goto A, Murota H, Echigo M, Kato T, Nemoto R, Mori H. (1981). Study on microencapsulation of anticancer drugs. 1. Microencapsulation of anticancer drugs and their dissolution rate. Byoin Yakugaku, 6:244-250.
- (1978). Formulation of 383. Vishwanath K, Sharma SN. diphenhydramine into sustained action dosage form. Part I. Indian J Pharm Sci, 40:99-100.
- 384. Vitek R. (1978). Clean grip, pressure-sensitive adhesive tape or film. DE 2820051 A1.
- 385. Yoon MA, Yong JI. (1987). Pharmaceutical studies on microencapsulated propranolol hydrochloride. Hakhoechi, 17:67-73.
- 386. Yoshida H, Uesugi T, Noro S. (1980). [The effect of physical condition in first emulsification for yield of microcapsules (author's transl)]. Yakugaku Zasshi, 100:1203-1208.

- 387. Zhang RC. (2002). Preparation of microcapsules by drying-inliquid with a [(OI/WI)/OII]/WII multi-emulsion. Chem Res Chin Univ, 18:438-440.
- 388. Zhang Y, Chen L, Li B, Hua Z, Wu Y, Liu Z, Lu W. (2004). Effects of processing parameters on ethylcellulose microencapsulation using supercritical CO2 antisolvent precipitation. Shipin Kexue, 25:96-99.
- 389. Weiss G, Yamaguchi H, Ibuki R, Yasumura M, Ohnishi N. (1998). Microencapsulation of the renin inhibitor FK906 by phase separation of ethylcellulose in cyclohexane. J Microencapsul, 15:335-346.
- 390. Zhelyazkova Zh, Petrova G. (1984). Effect of some technological factors on the properties of microcapsules of iron (II) sulfate. Farmatsiya (Sofia, Bulgaria), 34:35-39.
- 391. Zhelyazkova Zh, Dilov P, Chakarov R, Isaev I. (1985). Drug forms with microencapsulated iron (II) sulfate. Problemi na Farmatsiyata, 13:49-55.
- 392. Williams D, Meier PM, Gron P, Hitchcock CJ, Mullins TJ, Bowen WH. (1982). Cariostatic microcapsules for aerosol delivery. J Pedod, 6:218-228.
- 393. Witz I. (1982). Microcapsules for pressure sensitive recording materials. GB 2017624 B.
- 394. Zou L, Zhang X, Zhang J, Chu L. (1991). Preparation of ampicillin sodium-ethylcellulose and sulfadimidine-gelatin microcapsules and the sustained release of the microcapsules. Shandong Yike Daxue Xuebao, 29:162-164.
- 395. METHOCELTM website. (2007). www.methocel.com.
- 396. (1962). Printing process. DE 1128872.

Appendix: Continuations of Tables 1, 10 and 17

Table 1 (continued). References identified who	ere ethylcellulose was used for microencapsulati	on.
Ethylcellulose references		
Dahlström and Eriksson, 1971 ¹⁷⁴	Farid et al., 1994 ¹⁷⁶	Hecquet et al., 1984 ³³⁵
Dailey and Dowler, 1995 ²⁸¹	Farivar et al., 1993 ³³⁶	Heintz and Teipel, 2000 ³¹⁹
Dailey and Dowler, 1996 ³⁰⁵	Fekete et al., 1989 ¹¹²	Heintz et al., 2001 ³³⁷
Das, 1991 ²¹⁷	Fekete, 1992 ¹¹¹	Hirata and Niki, 1975 ³²⁶
Das, 1993 ³²⁸	Fernandez-Urrusuno et al., 2000 ²⁹¹	Hitchcock, 1980 ³³⁸
Deasy et al., 1980 ³⁴	Forni et al., 1991 ²⁶²	Hosny et al., 1998 ¹⁸⁰
Deshpande and Njikam, 1977 ²⁸⁴	Friend et al., 1997 ²⁰³	Hsiao and Chou, 1989 ¹²
Dévay and Rácz, 1984 ³³⁹	Fukumori et al., 1991 ²⁴⁸	Hu et al., 1999 ²⁷²
Dévay and Rácz, 1987 ³⁴⁰	Fukumori et al., 1991 ²⁴⁹	Huang and Ghebre-Sellassie, 1989 ²²²
Dobetti et al., 1999 ³²⁷	Gantt et al., 2000 ³⁷	Ibrahim et al., 1990 ²³⁸
Donbrow and Benita, 1977 ¹⁰¹	Gentilini, 1986 ³⁴¹	Ichikawa and Fukumori, 2000 ⁷²
Doshi et al., 1994 ¹⁹⁹	Georgiev et al., 1994 ⁶⁹	Inoe, 1992 ²⁰⁴
Dragan et al., 1985 ³¹	Ghorab et al., 1990 ²³⁷	Ishibashi et al., 1984 ⁹²
Du et al., 2001 ²⁶³	Giannini and Bashour, 1989 ⁹⁷	Ishibashi et al., 1984 ⁹³
Dubernet et al., 1990 ³⁴²	Gold, 2001 ²⁹⁴	Ishibashi et al., 1985 ⁹¹
Dubernet et al., 1991 ²³⁶	Golzi et al., 2004 ⁹⁵	Itoh et al., 1980 ²⁵⁹
Ducroux et al., 1984 ²⁸⁷	Goto, 1994 ²⁹⁵	Jalsenjak et al., 1980 ¹⁸²
Dyug et al., 1982 ³⁴³	Goto et al., 1973 ²⁹⁷	Jani et al., 1992 ³⁴⁴
Echigo et al., 1982 ²⁸⁹	Goto et al., 1976 ³⁴⁵	John, 1979 ²⁰⁵
El-Helw, 1987 ²⁰¹	Goto et al., 1984 ⁸⁸	Jones and Pearce, 1995 ²²³
El-Helw and Nixon, 1987 ³⁴⁶	Goto et al., 1985 ³²	Jouffroy, 1984 ³⁰⁸
El-Helw et al., 1988 ³⁴⁷	Guo and Xu, 1998 ²⁹⁸	Kaeser-Liard et al., 1984 ³⁴⁸
El-Helw and Bayomi, 2000 ²⁵⁷	Guyot and Fawaz, 1998 ⁴¹	Kallstrand et al., 1986 ³²¹
Elbahri and Taverdet, 2005 ²¹⁹	Han and Li, 2001 ²⁵⁰	Kaltsatos et al., 1989 ¹⁸⁹
Elbary et al., 2001 ⁶⁶	Harte, 1978 ³¹⁸	JP 58035111 A2; Anon., 1981 ²⁶⁵
Eley et al., 1992 ³⁰⁶	Hasan et al., 1992 ³⁴⁹	Kantor et al., 1989 ³²²
Fan et al., 1996 ²⁰²	He and Hou, 1989 ¹⁷⁸	Karakasa et al., 1994 ²⁷⁴
Kassem et al., 1975 ¹⁸⁴	Kristl et al., 1991 ²⁰⁹	Moldenhauer and Nairn, 1992 ⁸⁴
Kassem et al., 1978 ⁸¹		Moldenhauer and Nairn, 1992 Moldenhauer and Nairn, 199483
Kato, 1981 ²⁷⁵	Kristmundsdottir and Ingvarsdottir, 1994 ²⁴² Ku and Kang, 1991 ²⁴³	•
Kato and Nemoto, 1978 ²⁷⁷	Lavasanifar et al., 1997 ²⁸⁵	Morishita et al., 1973 ²³¹
,	•	Morishita et al., 1976 ²³³
Kato and Nemoto, 1978 ³³⁴	Lee et al., 1984 ³³	Morishita et al., 1981 ²¹²
Kato et al., 1979 ²⁷⁸	Liao et al., 2003 ²⁶⁷	Morishita et al., 1985 ¹⁶⁵
Kato, 1981 ⁷⁹	Lin, 1985 ²¹⁰	Morre et al., 2002 ¹⁶⁶
Kato et al., 1985 ³¹⁰	Lin et al., 1985 ¹⁰⁴	Morris and Warburton, 1982 ⁵²
Kawashima et al., 1984 ¹⁰²	Lin and Yang, 1986 ¹⁸⁷	Morse, 1971 ⁵⁹
Kentepozidou and Kiparissides, 1995 ²²⁵	Lin et al., 1988 ²⁹⁰	Morse and Hammes, 1972 ³¹⁶
Khalil and El-Gamal, 1973 ²³⁹	Lin and Chen, 1992 ¹⁹⁰	Morse and Hammes, 1974 ¹⁹³
Khanna et al., 1982 ⁷⁷	Lin and Wu, 1999 ²²⁹	Morse and Hammes, 1974 ³³⁰
Kim et al., 1999 ²⁵¹	Lin et al., 2004 ²⁶⁴	Morse et al., 1978 ¹⁹⁴
Kimura, 1971 ³⁵⁰	Lippmann et al., 1981 ¹¹	Mortada, 1982 ²¹³
Kimura et al., 1999 ²⁸⁰	Lippold et al., 1989 ¹⁰⁹	Motycka and Nairn, 1979 ⁸⁹
Kiritani, 1973 ²²⁷	Mallick et al., 1999 ³⁵¹	Motycka et al., 1985 ⁸⁷
Kitajima et al., 1969 ³⁵²	Mallick et al., 2002 ³⁵³	Murai et al., 1971 ³⁵⁴
Kitakoji et al., 1973 ²⁶⁶	Manekar et al., 1992 ²⁴⁵	Murav'ev and Andreeva, 1987 ¹⁶⁷
Knezevic et al., 1998 ²⁵²	Manekar et al., 1992 ²³⁴	Murgu et al., 1981 ³⁰¹
Koida et al., 1983 ⁴⁰	Manekar et al., 1993 ²³⁵	Murthy and Chowdary, 2004 ⁹⁶
Koida et al., 1984 ¹⁰³	Mao and Zhang, 1994 ²⁶⁸	Murthy and Chowdary, 2005 ²¹⁴
Koida et al., 1986 ²⁰⁸	Maysinger and Jalsenjak, 1983 ²⁹²	Nakajima et al., 1987 ³³¹
Kondo et al., 1972 ¹⁸⁶	Meier et al., 1974 ⁵¹	Nasa and Yadav, 1989 ¹⁹⁵
Kondo and Ueda, 1973 ³²⁹	NL 7215117 A; Anon., 1974 ¹⁶⁴	NL 6611661; Anon., 1967 ¹⁹⁶
Kosenko et al., 1986 ²⁴¹	Miller and Anderson, 1964 ⁶	Nelson, 1974 ³⁵⁵
Kostova et al., 1994 ⁶⁸	Moldenhauer and Nairn, 1990 ⁸⁶	Nemoto and Kato, 1981 ³⁰²

Table 1. Continued.

Ethylcellulose references Kozlova et al., 1977²⁸² Nikolaev et al., 1990¹⁶⁸

Nikolayev and Gebre-Mariam, 1993^{169} Nimmannit and Suwanpatra, 1996^{356} Nixon and Agyilirah, 1982^{105}

Nixon and Agyilirah, 1982¹⁰⁵ Nixon and Meleka, 1984²⁵⁵ Nixon and Nimmannit, 1985²⁵⁶ Nixon and Wong, 1990¹⁹⁷

Nixon and Wong, 1990¹⁹⁷
Oh and Lee, 1982³⁶¹
Okamoto et al., 1986²⁹⁶
Öner et al., 1983³⁶³
Öner et al., 1984³⁶⁵
Öner et al., 1988³⁶⁷
Özyazici et al., 1996¹⁷⁰
Palomo et al., 1996³⁰⁴
Pandell and Temin, 1972³⁶⁸
Perez-Martinez et al., 2001²¹⁵
Persson and Lindblom, 1981²⁵³

Powell, 1993^{198} Putcha et al., 2005^{300} Raghubanshi et al., 1991^{171} Rak et al., 1984^{200}

Powell and Anderson, 1971107

Portnyagina et al., 1991299

Rak et al., 1984²⁷⁰ Rak et al., 1984²⁷¹ Rani et al., 1994²⁷³ Rao et al., 2005³⁷⁹

Ravichandran et al., 2001²¹⁶ Uchida et al., 1987²⁴⁰ Uchida and Goto, 1988²⁸³ Uchida et al., 1989²⁸⁶ Uchida et al., 1992⁴⁴ Uddin et al., 2001³⁹ Unno et al., 1981³⁸² Uno et al., 1984²²¹ Utsuki et al., 1996²⁸⁸

Venkatesh and Kramer, 2003³⁸ Vishwanath and Sharma, 1978³⁸³

Vitek, 1978³⁸⁴
Vitkova et al., 1983⁵⁶
Vitkova et al., 1984²¹¹
Vitkova et al., 1986¹⁸¹
Vitkova et al., 1994¹⁸⁸
Vo et al., 2000²⁶⁹
Wang et al., 1993³⁰⁹
Wang et al., 1993³¹¹

Weiss et al., 1998³⁸⁹ Whitaker Sr., 1991¹⁹¹

Wang et al., 1995312

Wang et al., 1996313

Wieland-Berghausen et al., 2002^{192} Williams et al., 1982^{392} Witz, 1982^{393}

Wu et al., 1993²⁶⁰ Wu et al., 1994⁴³ Moldenhauer and Nairn, 199185

Rhee et al., 1997⁶⁷ Ruiz et al., 1990²¹⁸

Safwat and El-Shanawany, 198971

Sajeev et al., 2002¹⁷² Sakr, 1991³⁵⁷

Sakuma and Atsumi, 1990317

Salib, 1973³⁵⁹
Salib et al., 1976²⁵⁸
Salib et al., 1989³⁶²
Samejima, 1985¹⁵
Samejima et al., 1982¹⁰⁶
Samejima et al., 1985^{47,48}
Samejima et al., 1985^{47,48}
Samejima et al., 1985^{47,48}
Samejima et al., 1985^{47,48}
Samejima et al., 1985⁴⁹

Senjkovic and Jalsenjak, 1984²⁵⁴

Sevgi et al., 1994¹⁷³ Sevgi et al., 1994³⁷¹ Sfar and Karoui, 1989⁷³ Shear and Kershman, 2000³⁷³ Shekerdzhiiski et al., 1988³⁷⁴ Shekhare and Gupta, 1989³⁷⁶ Sheorey et al., 1991²²⁰ Shin and Koh, 1989⁷⁵ Shindo, 1988²⁷⁶

Shopova and Tomova, 1982³⁸⁰ Shopova et al., 1987¹⁷⁵ Yalabik-Kas, 1983³⁸¹ Yalabik-Kas, 1983²⁹³ Yamada et al., 1996²⁷⁰ Yang et al., 2000²²⁴ Yang et al., 2001²²⁶

Yang et al., 2001²²⁶ Yang et al., 2001²²⁸ Yang et al., 2005²³⁰ Yazan et al., 1995¹⁸³ Yazici et al., 1996²⁶¹ Yokota et al., 1994⁹⁰

Yokoyama and Shibata, 1987³²³

Yoon and Yong, 1987³⁸⁵
Yoshida, 1972²⁴⁴
Yoshida et al., 1980³⁸⁶
Zandi et al., 1998²³²
Zhang et al., 1993³¹⁵
Zhang et al., 2000^{26,27}
Zhang et al., 2000^{26,27}
Zhang et al., 2000³⁸⁷
Zhang et al., 2004³⁸⁸

Zhelyazkova and Petrova, 1984³⁹⁰ Zhelyazkova et al., 1985³⁹¹

Zhu et al., 1992²⁴⁶ Zia et al., 1991¹⁸⁵ Zou et al., 1991³⁹⁴ Zulkarnain, 1996²⁴⁷ Nemoto and Kato, 1984³⁰³ Singh and Robinson, 1988¹¹³ Singh and Robinson, 1990³⁰ Singla and Nagrath, 1988⁵³ Snipes and Wagner, 1989⁷⁴

Sriwongjanya and Bodmeier, 1997⁸² Suryakusuma and Jun, 1984³⁵⁸ Suryakusuma and Jun, 1984³⁶⁰

Sveinsson and Kristmundsdottir, 1992²⁰⁶

Szretter and Zakrzewski, 1984²⁰⁷ Szretter and Zakrzewski, 1984³⁶⁴ Szretter and Zakrzewski, 1987³⁶⁶ Szretter and Zakrzewski, 1987³²⁰

Takada, 2000307

Takashima et al., 1985³³² Masayoshi and Goichi, 1981³⁶⁹ JP 01005004 B4; Anon., 1981³³³ JP 63007091 B4; Anon., 1982³⁷⁰

Tanaka, 1978²⁷⁹ Tateno et al., 1978³⁷²

Tirkkonen and Paronen, 1993177

Titeva et al., 1986³⁷⁵ Tomova et al., 1988³⁷⁷

JP 56049315 A2; Anon., 1980378

Tsai and Huang, 1985^{55} Tsujiyama et al., 1989^{46} Tsujiyama et al., 1990^{45} Tuncel et al., 1996^{179}

Table 10 (continued). Application-oriented publications where microcapsules were utilized to achieve modified release.

Methylcellulose references	Hypromellose references
Cohen, 1986 ¹⁵²	Ayer et al., 1994 ⁹⁸
	Gold, 2001 ²⁹⁴
	Hasçiçek et al., 2003100

Table 17 (continued).	References identified where	protective colloids were utilized to make microcapsules.

Protective colloid	References	
Polyisobutylene	Barik et al., 1993 ¹⁵⁵	Koida et al., 1984 ¹⁰³
	Barik et al., 2004 ⁶⁰	Kristl et al., 1991 ²⁰⁹
	Cameroni et al., 1985 ¹⁴¹	Lin, 1985 ²¹⁰
	Carpov et al., 1982144	Moldenhauer and Nairn, 1990 ⁸⁶
	Carpov et al., 1980 ¹⁴⁷	Moldenhauer and Nairn, 199185
	Chemtob, 1987 ¹⁴	Moldenhauer and Nairn, 199284
	Chemtob et al., 1986160	Moldenhauer and Nairn, 1994 ⁸³
	Chemtob et al., 1986162	Nixon and Agyilirah, 1982 ¹⁰⁵
	Chemtob et al., 1989115	Samejima et al., 1985 ^{47,48}
	Das, 1991 ²¹⁷	Samejima et al., 1982 ¹⁰⁶
	Das, 1993 ³²⁸	Shin and Koh, 1989 ⁷⁵
	Donbrow and Benita, 1977 ¹⁰¹	Sveinsson and Kristmundsdottir, 1992 ²⁰⁶
	Hirata and Niki, 1975 ³²⁶	Tirkkonen and Paronen, 1993177
	Kawashima et al., 1984 ¹⁰²	Uddin et al., 2001 ³⁹
	Koida et al., 1983 ⁴⁰	Wieland-Berghausen et al., 2002192
Silicone	Masayoshi and Goichi, 1981369	
Sucrose	Chikamatsu et al., 1984 ⁷⁶	

